精英家教网 > 初中数学 > 题目详情

【题目】如图,点A在抛物线yx2﹣2x+2上运动,过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则BD的最小值为(  )

A. B. 1 C. D. 2

【答案】B

【解析】

先利用配方法得到抛物线的顶点坐标为(1,1),再根据矩形的性质得BD=AC,由于AC的长等于点A的纵坐标,所以当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1,从而得到BD的最小值.

解:∵y=x2﹣2x+2=(x﹣1)2+1,

∴抛物线的顶点坐标为(1,1),

∵四边形ABCD为矩形,

BD=AC,

ACx轴,

AC的长等于点A的纵坐标,

当点A在抛物线的顶点时,点Ax轴的距离最小,最小值为1,

∴对角线BD的最小值为1.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.

(1)求这个二次函数的解析式;

(2)是否存在点P,使POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;

(3)动点P运动到什么位置时,PBC面积最大,求出此时P点坐标和PBC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是

A. 连续抛一均匀硬币2次必有1次正面朝上

B. 连续抛一均匀硬币10次都可能正面朝上

C. 大量反复抛一均匀硬币,平均100次出现正面朝上50

D. 通过抛一均匀硬币确定谁先发球的比赛规则是公平的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若关于x的三个方程x2+4mx+4m2+2m+3=0,x2+(2m+1)x+m2=0,(m﹣1)x2+2mx+m﹣1=0中至少有一个方程有实根,则m的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MAN=30°,点CB分别在射线AMAN上,AB=6,∠ACB=30°.动点P从点A出发,沿射线AN以每秒3个单位长度的速度运动.过点PPQAN交射线AM于点Q,点E是线段AQ的中点,连结PE.设△PQE与△ABC重叠部分图形的面积为S平方单位,点P的运动时间为t秒(tO).

(1)求PQ的长(用含t的代数式表示).

(2)当点Q在边AC上时,求St之间的函数关系式.

(3)当△PQE与△ABC重叠部分图形是一个面积为的三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图AB⊙O的切线,切点为BAO⊙O于点C,过点CDC⊥OA,交AB于点D.

(1)求证:∠CDO∠BDO

(2)∠A30°⊙O的半径为4,求阴影部分的面积(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE。当点D在边BC上运动时,OE的长度的最小值是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣ x2+bx+cy轴交于点C,与x轴交于A、B两点(点A在原点左侧,点B在原点右侧),且∠ACB=90°,tanBAC=

①求抛物线的解析式;

②若抛物线顶点为P,求四边形APCB的面积.

查看答案和解析>>

同步练习册答案