精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知矩形OABC的顶点A在x轴上,OA=4,OC=3,点D为BC边上一点,以AD为一边在与点B的同侧作正方形ADEF,连接OE。当点D在边BC上运动时,OE的长度的最小值是________

【答案】5

【解析】

过点DDGOA,过点EHEDG.先证明HED≌△GDA,从而得到HE=DG=3,HD=AG.设D(a,3),则DC=a,DH=AG=4-a,则E(a+3,7-a),依据两点间的距离公式可得到OE=,最后利用配方法求得被开方数的最小值即可.

如图所示:过点DDGOA,过点EHEDG.

DGOA,HEDG,

∴∠EHD=DGA=90°.

∴∠GDA+DAG=90°.

∵四边形ADEF为正方形,

DE=AD,HDE+GDA=90°.

∴∠HDE=GAD.

HEDGDA

∴△HED≌△GDA.

HE=DG=3,HD=AG.

D(a,3),则DC=a,DH=AG=4-a.

E(a+3,7-a).

OE==

a=2时,OE有最小值,最小值为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:

①二次函数y=ax2+bx+c的最小值为﹣4a;

②若﹣1≤x2≤4,则0≤y2≤5a;

③若y2>y1,则x2>4;

④一元二次方程cx2+bx+a=0的两个根为﹣1

其中正确结论的个数是(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A在抛物线yx2﹣2x+2上运动,过点AACx轴于点C,以AC为对角线作矩形ABCD,连结BD,则BD的最小值为(  )

A. B. 1 C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料,解答问题:

1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为34时,那么斜边的长为5.”上述记载说明:在中,如果,那么三者之间的数量关系是:

2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:

(用含的式子表示)

又∵

3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AC、BD相交于点O,OEBCE,连接DEOC于点F,作FGBCG.

(1)说明点G是线段BC的一个三等分点;

(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于某一个函数,自变量x在规定的范围内,若任意取两个值x1和x2,它们的对应函数值分别为y1和y2. 若x2>x1时,有y2>y1,则称该函数单调递增;若x2>x1时,有y2<y1,则称该函数单调递减.例如二次函数y=x2,在x≥0时,该函数单调递增;在x≤0时,该函数单调递减.

(1)二次函数:y=(x+1)2+2自变量x在哪个范围内,该函数单调递减?

(2)证明:函数:y=x﹣在x>1的函数范围内,该函数单调递增.

(3)若存在两个关于x的一次函数,分别记为:g=k1x+b1和h=k2x+b2,且函数g在实数范围内单调递增,函数h在实数范围内单调递减.记第三个一次函数y=g+h,则比例系数k1和k2满足何种条件时,函数y在实数范围内单调递增?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,两个小圆的半径分别是2厘米和3厘米,最外侧大圆的面积是半径为2厘米的小圆面积的几倍?阴影部分的面积是半径为3厘米的圆的面积的多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的内切圆⊙O与两直角边AB,BC分别相切于点D、E,过劣弧DE(不包括端点D,E)上任一点P⊙O的切线MNAB,BC分别交于点M,N,若⊙O的半径为4cm,则Rt△MBN的周长为________cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.

(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?

(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.

①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?

②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?

查看答案和解析>>

同步练习册答案