【题目】如图,在长方形中,=4, =8,点是边上一点,且,点是边上一动点,连接,,则下列结论:① ;②当时,平分 ; ③△周长的最小值为15 ;④当时,平分.其中正确的个数有( )
A.4个B.3个C.2个D.1个
【答案】B
【解析】
根据,可设BE=x,则AE=8-x,利用Rt△ABE中勾股定理即可求出BE;当时,四边形APCE为菱形,故可得到平分 ;作C点关于直线AD的对称点C’,根据对称性即可求出△周长的最小值;过点A作AH⊥PE,PG⊥BC,根据求得DP、GC的长,再得到EG,故可求出BP的长,根据等面积法得到AH的长,由AH=AB即可证明平分.
∵,设BE=x,则AE=8-x,
在Rt△ABE中AE2=AB2+BE2,
即(8-x)2=42+x2,
解得x=3,故① 正确;
当时,∵EC=5
∴AP∥EC,AP=CE,
∴四边形APCE为平行四边形。
又AE=EC,
∴四边形APCE为菱形,
故可得到平分 ,②正确;
作C点关于直线AD的对称点C’,则PC=PC’
∴△周长的最小值为EC+EC’=5+,故③错误;
过点A作AH⊥PE,PG⊥BC,
∴AB=PG=4
∵
∴PD==GC
∴EG=5-=
故EP==
又S△AEP=AP×PG=EP×AH
即××4=××AH
∴AH=4=AB,
∴平分,④正确;
故选B.
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程。
(1)求证:方程有两个不相等的实数根;
(2)若△ABC的两边AB、AC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”“10元”“20元”“30元”的字样.规定:顾客在本超市一次性消费满200元,就可以在箱子里先后摸出2个小球(第一次摸出后不放回).某顾客刚好消费200元,则该顾客所获得购物券的金额不低于30元的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察与探究:
(1)观察下列各组数据并填空:
A:1,2,3,4,5,
平均数xA=________,方差sA2=________;
B:11,12,13,14,15,
平均数xB=________,方差sB2=________;
C:10,20,30,40,50,
平均数xC=________,方差sC2=________;
(2)分别比较A与B,C的计算结果,你能发现什么规律?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AD平分∠BAC交BC于点D,在AB上取一点E,使得EA=ED.
(1)求证:DE∥AC;
(2)若ED=EB,BD=2,EA=3,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C.请解答下列问题:
(1)求抛物线的函数解析式并直接写出顶点M坐标;
(2)连接AM,N是AM的中点,连接BN,求线段BN长.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠B=90°,AB=3,BC=4,AC=5;
实践与操作:过点A作一条直线,使这条直线将△ABC分成面积相等的两部分,直线与BC交于点D.(尺规作图,不写作法,保留作图痕迹,标清字母)
推理与计算:求点D到AC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=2x2﹣4x﹣6.
(1)求这个二次函数图象的顶点坐标及对称轴;
(2)指出该图象可以看作抛物线y=2x2通过怎样平移得到?
(3)在给定的坐标系内画出该函数的图象,并根据图象回答:当x取多少时,y随x增大而减小;当x取多少时,y<0.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com