精英家教网 > 初中数学 > 题目详情

【题目】已知ABO直径,ACO的切线,BCO于点D(如图1).

(1)若AB=2,∠B=30°,求CD的长;

(2) 取AC的中点E,连结DE(如图2),求证:DEO相切.

【答案】(1);(2)见解析

【解析】分析:连接AD ,根据AC是⊙O的切线,AB是⊙O的直径,得到∠CAB=ADB=90°,根据∠B=30°,解直角三角形求得的长度.

连接ODAD.根据DE=CE=EAEDA=EAD. 根据OD=OA,得到

ODA=DAO,得到∠EDA+ODA=EAD+DAO.得到∠EDO=90°即可.

详解:(1)如图,连接AD ,

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=90°,

ΔCABCAD均是直角三角形.

∴∠CAD=B=30°.

RtΔCAB中,AC=ABtan30°=

∴在RtΔCAD中,CD=ACsin30°=

(2)如图,连接ODAD.

AC是⊙O的切线,AB是⊙O的直径,

∴∠CAB=ADB=ADC=90°,

又∵EAC中点,

DE=CE=EA, 

∴∠EDA=EAD.

OD=OA

∴∠ODA=DAO

∴∠EDA+ODA=EAD+DAO.

即:∠EDO=EAO=90°. 

又点D在⊙O上,因此DE与⊙O相切.

点睛:考查解直角三角形,圆周角定理,切线的判定与性质等,属于圆的综合题,比较基础.注意切线的证明方法,是高频考点.

型】解答
束】
21

【题目】课外活动时间,甲、乙、丙、丁4名同学相约进行羽毛球比赛.

(1)如果将4名同学随机分成两组进行对打,求恰好选中甲乙两人对打的概率;

(2)如果确定由丁担任裁判,用“手心、手背”的方法在另三人中竞选两人进行比赛.竞选规则是:三人同时伸出“手心”或“手背”中的一种手势,如果恰好只有两人伸出的手势相同,那么这两人上场,否则重新竞选.这三人伸出“手心”或“手背”都是随机的,求一次竞选就能确定甲、乙进行比赛的概率.

【答案】(1);(2)

【解析】分析:列举出将4名同学随机分成两组进行对打所有可能的结果,找出甲乙两人对打的情况数,根据概率公式计算即可.

画树状图写出所有的情况,根据概率的求法计算概率.

详解:(1)甲同学能和另一个同学对打的情况有三种:

(甲、乙),(甲、丙),(甲、丁)

则恰好选中甲乙两人对打的概率为:

(2)树状图如下:

一共有8种等可能的情况,其中能确定甲乙比赛的可能为(手心、手心、手背)、(手背、手背、手心)两种情况,因此,一次竞选就能确定甲、乙进行比赛的概率为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某电器超市销售A、B两种不同型号的电风扇,每种型号电风扇的购买单价分别为每台310元,460元.

(1)若某单位购买A,B两种型号的电风扇共50台,且恰好支出20000元,求A,B两种型号电风扇各购买多少台?

(2)若购买A,B两种型号的电风扇共50台,且支出不超过18000元,求A种型号电风扇至少要购买多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,MNEF,C为两直线之间一点.

(1)如图1,若MAC与EBC的平分线相交于点D,若ACB=100°,求ADB的度数.

(2)如图2,若CAM与CBE的平分线相交于点D,ACB与ADB有何数量关系?并证明你的结论.

(3)如图3,若CAM的平分线与CBF的平分线所在的直线相交于点D,请直接写出ACB与ADB之间的数量关系:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2017年11月9日,微信团队在成都腾讯全球合作伙伴大会上发布消息称:2017年全球平均日登录微信用户数9.02亿,较去年增长17%.按此增长速度,预计2019年全球平均日登录微信用户数为( )

A. 9.02×(17%)2亿 B. 9.02×(1+17%)亿 C. 9.02×(1+17%)2亿 D. 9.02×(1+2×17%)亿

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段AB4.8cmC是线段AB的中点,D是线段CB的中点,点EAB上,且CEAC,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图是由边长为1个单位长度的小正方形组成的网格,线段AB的端点在格点上.

(1)请建立适当的平面直角坐标系xOy,使得A点的坐标为(-3,-1),在此坐标系下,B点的坐标为________________

(2)将线段BA绕点B逆时针旋转90°得线段BC,画出BC;在第(1)题的坐标系下,C点的坐标为__________________

(3)在第(1)题的坐标系下,二次函数y=ax2+bx+c(a≠0)的图象过OBC三点,则此函数图象的对称轴方程是________________.

【答案】 (-1,2) (2,0) x=1

【解析】分析:根据点的坐标建立坐标系,即可写出点的坐标.

画出点旋转后的对应点连接,写出点的坐标.

用待定系数法求出函数解析式,即可求出对称轴方程.

详解:(1)建立坐标系如图,

B点的坐标为

(2)线段BC如图,C点的坐标为

(3)把点代入二次函数,得

解得:

二次函数解析为:

对称轴方程为:

故对称轴方程是

点睛:考查图形与坐标;旋转、对称变换;待定系数法求二次函数解析式,二次函数的图象与性质.熟练掌握各个知识点是解题的关键.

型】解答
束】
18

【题目】特殊两位数乘法的速算——如果两个两位数的十位数字相同,个位数字相加为10,那么能立说出这两个两位数的乘积.如果这两个两位数分别写作ABAC(即十位数字为A,个位数字分别为B、C,B+C=10,A>3),那么它们的乘积是一个4位数,前两位数字是A(A+1)的乘积,后两位数字就是BC的乘积.

如:47×43=2021,61×69=4209.

(1)请你直接写出83×87的值;

(2)设这两个两位数的十位数字为x(x>3),个位数字分别为yz(y+z=10),通过计算验证这两个两位数的乘积为100x(x+1)+yz.

(3)99991×99999=___________________(直接填结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ΔABC中,AB=AC,点EF在边BC上,BE=CF,点DAF的延长线上,AD=AC

1)求证:ΔABEΔACF

2)若∠BAE=30°,则∠ADC= (直接写答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,数轴上点表示的有理数分别为-105,点是射线上的一个动点(不与点重合),点是线段靠近点的三等分点,点是线段靠近点的三等分点.

1)若点表示的有理数是0,那么的长为______;若点表示的有理数是1,那么的长为______.

2)点在射线上运动(不与点重合)的过程中,的长是否发生改变?若不改变,请求出的长;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象关于y轴对称且交y轴负半轴于点C,与x轴交于点AB,已知AB=6OC=4C的半径为P为⊙C上一动点.

1)求出二次函数的解析式;

2)是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;

3)连接PB,若EPB的中点,连接OE,则OE的最大值是多少?

查看答案和解析>>

同步练习册答案