精英家教网 > 初中数学 > 题目详情

【题目】AB分别在x轴负半轴和y轴正半轴上,点C2,-2),CACB分别交坐标轴于DECAAB,且CA=AB.

1)求点B的坐标;

2)如图2,连接DE,求证:BDAE=DE.

【答案】1B04);(2)见解析

【解析】

1)作CMx轴于M,求出CM=OM=2,利用AAS证出△BAO≌△ACM,得出AO=CM=2OB=AM=4,即可得出答案;
2)在BD上截取BF=AE,连AF,证△BAF≌△CAE,证△AFD≌△CED,即可得出答案.

解:(1)如图1,作CMx轴于M


C2-2),
CM=2OM=2
ABAC
∴∠BAC=AOB=CMA=90°
∴∠BAO+CAM=90°,∠CAM+ACM=90°
∴∠BAO=ACM
在△BAO和△ACM

∴△BAO≌△ACM
AO=CM=2OB=AM=AO+OM=2+2=4
B04).
2)证明:如图2,在BD上截取BF=AE,连AF


∵△BAO≌△CAM
∴∠ABF=CAE
在△ABF和△ACE中,

∴△ABF≌△CAESAS),
AF=CE,∠ACE=BAF=45°
∵∠BAC=90°
∴∠FAD=45°=ECD
由(1)可知OA=OMODCM
AD=DC,(图1中),
在△AFD和△CED中,

∴△AFD≌△CEDSAS),
DE=DF
BD-AE=DE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,两个边长分别为a,b(a>b)的正方形连在一起,三点C,B,F同一直线上,反比例函数y=在第一象限的图象经过小正方形右下顶点E.若OB2﹣BE2=8,则k的值是(  )

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程kx2-2(k+1)x+k-1=0有两个不相等的实数根x1,x2

(1)求k的取值范围;

(2)是否存在实数k,使=1成立?若存在,请求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AEAB,AFAC,AE=AB,AF=AC.求证:(1)EC=BF;(2)ECBF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形 ABCD 中,AB=3cm,以 B 为圆心,1cm 长为半径画☉B,点 P 在☉B 上移动,连接 AP,并将 AP 绕点 A 逆时针旋转 90° AP',连接 BP',在点 P 移动过程中,BP' 长度的最小值为________cm。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学有库存1800套旧桌凳,修理后捐助贫困山区学校.现有甲,乙两个木工组都想承揽这项业务.经协商后得知:甲木工组每天修理的桌凳套数是乙木工组每天修理桌凳套数的,甲木工组单独修理这批桌凳的天数比乙木工组单独修理这批桌凳的天数多10天,甲木工组每天的修理费用是600元,乙木工组每天的修理费用是800元.

1)求甲,乙两木工组单独修理这批桌凳的天数;

2)现有三种修理方案供选择:方案一,由甲木工组单独修理这批桌凳;方案二,由乙木工组单独修理这批桌凳;方案三,由甲,乙两个木工组共同合作修理这批桌凳.请计算说明哪种方案学校付的修理费最少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形中,,对角线相交于,过点作点,中点,连接点,交的延长线于点,下列个结论:①;②;③;④,⑤.正确的有( )个.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,关于x的一元二次方程x2+(1﹣k)x﹣k=0 (其中k为常数).

(1)判断方程根的情况并说明理由;

(2)若﹣1<k<0,设方程的两根分别为m,n(m<n),求它的两个根mn;

(3)在(2)的条件下,若直线y=kx﹣1x轴交于点C,x轴上另两点A(m,0)、点B(n,0),试说明是否存在k的值,使这三点中相邻两点之间的距离相等?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正确的个数是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步练习册答案