【题目】如图,矩形中,,对角线相交于,过点作交于点,为中点,连接交于点,交的延长线于点,下列个结论:①;②;③;④,⑤.正确的有( )个.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】
根据BC=2AB,H为BC中点,可得△ABH为等腰直角三角形,HE=BH=HC,可得△CEH为等腰三角形,又∠BCD=90°,CE⊥BD,利用互余关系得出角的相等关系,根据基本图形判断全等三角形,特殊三角形进行判断.
①在△BCE中,∵CE⊥BD,H为BC中点,
∴BC=2EH,又BC=2AB,
∴EH=AB,①正确;
②由①可知,BH=HE∴∠EBH=∠BEH,
又
∴∠ABG=∠HEC,②正确;
③由,得
同理:,∴,
∴△ABG≌△HEC,③错误;
④作AM⊥BD,则AM=CE,△AMD≌△CEB,
∵AD∥BC,
∴△ADG∽△HGB,
∴AGGH=2,
即△ABG的面积等于△BGH的面积的2倍,
根据已知不能推出△AMG的面积等于△ABG的面积的一半,
即S△GAD≠S四边形GHCE,
∴④错误
⑤,
又∠ECH=∠CDE=∠BAO,∠BAO=∠BAH+∠HAC,
∴∠F=∠HAC,
∴CF=BD,⑤正确.
正确的有3个.
故选:C.
科目:初中数学 来源: 题型:
【题目】下列从左边到右边的变形,是因式分解的是( )
A.y﹣5y﹣6=(y﹣6)(y+1)B.a+4a﹣3=a(a+4)﹣3
C.x(x﹣1)=x﹣xD.m+n=(m+n)(m﹣n)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:射线交于点,半径,是射线上的一个动点(不与、重合),直线交于,过作的切线交射线于.
图是点在圆内移动时符合已知条件的图形,在点移动的过程中,请你通过观察、测量、比较,写出一条与的边、角或形状有关的规律,并说明理由;
请你在图中画出点在圆外移动时符合已知条件的图形,第题中发现的规律是否仍然存在?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点A、B分别在x轴负半轴和y轴正半轴上,点C(2,-2),CA、CB分别交坐标轴于D、E,CA⊥AB,且CA=AB.
(1)求点B的坐标;
(2)如图2,连接DE,求证:BD-AE=DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元,设第二个月单价降低元.
(1)填表:(不需化简)
(2)如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】己知:正方形.
如图,点、点分别在边和上,且.此时,线段、的数量关系和位置关系分别是什么?请直接写出结论.
如图,等腰直角三角形绕直角顶点顺时针旋转,当时,连接、,此时中的结论是否成立,如果成立,请证明;如果不成立,请说明理由.
如图,等腰直角三角形绕直角顶点顺时针旋转,当时,连接、,猜想沟与满足什么数量关系时,直线垂直平分.请直接写出结论.
如图,等腰直角三角形绕直角顶点顺时针旋转,当时,连接、、、得到四边形,则顺次连接四边形各边中点所组成的四边形是什么特殊四边形?请直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题
(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是________(请直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(-3,0),对称轴为直线x=﹣1,给出四个结论: ①c>0; ②4a-2b+c>0. ③2a-b=0;④若点B(-1.5,y1)、C(-2.5,y2)为函数图象上的两点,则y1>y2; 其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com