精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠ACB=90°,点D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度数;(2)若∠ACB为α,则∠ECD的度数能否用含α的式子来表示.

【答案】见解析

【解析】试题分析:

1)由AF垂直平分CD可得AC=AD再由等腰三角形的“三线合一”可得∠FAB=CAB,同理可得∠GBA=CBA;如图,设AFBG相交于点O则∠GOF=AOB=180°-FAB-GBA=180°-180°-ACB=135°,由此在四边形GOFC中可得∠ECD=360°-CGO-CFO-GOF=360°-90°-90°-GOF=180°-135°=45°.

2)思路同(1)只需把∠ACB=90°换成∠ACB= 可解得DCE=90°- .

试题解析

1)如图,设AFBG相交于点O,连接CO

∵AF垂直平分CD

AC=ADCFO=90°∴∠FAB=CAB.

同理可得CGO=90°GBA=CBA.

∴∠GOF=AOB=180°-FAB-GBA=180°-180°-ACB=90°+ACB=135°

四边形GOFC的内角和为360°

∠ECD=360°-∠CGO-∠CFO-∠GOF

=360°-90°-90°-∠GOF

=180°-135°

=45°.

2同(1)可得∠GOF=90°+ACB=90°+ CFO=90°CGO=90°

四边形GOFC的内角和为360°

∠ECD=360°-∠CGO-∠CFO-∠GOF

=360°-90°-90°-∠GOF

=180°-90°+

=90°- .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某高校共有5个大餐厅和2个小餐厅。经过测试:同时开放1个大餐厅和2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅和1个小餐厅,可供2280名学生就餐。

(1)1个大餐厅和1个小餐厅分别可供多少名学生就餐?

(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图直线MNABCD的顶点DABC三点分别作MN的垂线垂足分别是EFG

求证DEFG

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn1按如图所示的方式放置,其中点A1、A2、A3、…、An均在一次函数y=kx+b的图象上,点C1、C2、C3、…、Cn均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点An的坐标为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于不等式组 下列说法正确的是(  )

A. 此不等式组无解 B. 此不等式组有7个整数解

C. 此不等式组的负整数解是﹣321 D. 此不等式组的解集是x≤2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】3292a+1÷27a+181,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式,属于二元一次方程的个数有( )

xy+2xy=74x+1=xy+y=5x=yx2y2=2

⑥6x2y ⑦x+y+z=1 ⑧yy1=2y2y2+x

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鲁班家装公司为芙蓉小区做家装设计,调查员设计了如下问卷,对家装风格进行专项调查.
通过随机抽样调查50家客户,得到如下数据:
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)请你补全下面的数据统计表: 家装风格统计表

装修风格

划记

户数

百分比

A中式

正正正正正

25

50%

B欧式

C韩式

5

10%

D其他

10%

合计

50

100%


(2)请用扇形统计图描述(1)表中的统计数据;(注:请标明各部分的圆心角度数)
(3)如果公司准备招聘10名装修设计师,你认为各种装修风格的设计师应分别招多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

同步练习册答案