精英家教网 > 初中数学 > 题目详情
12.如图,点B、C、D都在半径为6的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求弦BD的长.

分析 (1)根据圆周角的性质求得∠COB=2∠CDB=60°,然后证明四边形ABDC为平行四边形,从而证得∠A=∠D=30°,根据三角形的内角和定理证得∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,从而证得AC是⊙O的切线;
(2)根据平行线的性质得出∠OBD=30°,∠BEO=90°,然后通过直角三角函数即可求得BE,根据垂径定理从而求得BD的长.

解答 (1)证明:连接OC,OC交BD于E,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∵∠CDB=∠OBD,
∴CD∥AB,
又∵AC∥BD,
∴四边形ABDC为平行四边形,
∴∠A=∠D=30°,
∴∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,
又∵OC是⊙O的半径,
∴AC是⊙O的切线;
(2)解:由(1)知,OC⊥AC.
∵AC∥BD,
∴OC⊥BD,
∴BE=DE,
∵在直角△BEO中,∠OBD=30°,OB=6,
∴BE=OBcos30°=3$\sqrt{3}$,
∴BD=2BE=6$\sqrt{3}$.

点评 本题考查了平行四边形的判定和性质,切线的判定,平行线的性质,解直角三角函数等,连接OC构建直角三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.有A、B两个不透明的布袋,A袋中有三个相同的小球,分别标有数字-2,0和1,B袋中有两个相同的小球,分别标有数字0和-2,小林从A袋中随机取出一个小球,记录标有的数字为x,再从B袋中随机取出一个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y)
(1)用画树状图或列表的形式,求点Q在y轴上的概率;
(2)在平面直角坐标系xOy中,⊙O的半径是2,求过点Q能作⊙O切线的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列实数中,最大的是(  )
A.-1B.-2C.-$\sqrt{2}$D.-$\frac{4}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴是直线x=1,有下列结论:①b2>4ac;②4a-2b+c<0;③b<-2c;④若点(-2,y1)与(5,y2)是抛物线上的两点,则y1<y2,其中,正确的结论是(  )
A.①②B.①③C.①③④D.②③④

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在菱形ABCD中,对角线AC与BD相交于点O,点M是CD边的中点,连结OM,若OM=$\frac{5}{2}$cm,则菱形ABCD的周长为20cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程组:$\left\{\begin{array}{l}{x+2y=8,①}\\{{x}^{2}-5xy-6{y}^{2}=0②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.若一个三角形的外心在这个三角形的一边上,那么这个三角形是(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,半径为1的圆O与正五边形ABCDE相切于点A、C,劣弧AC的长度为(  )
A.$\frac{3}{5}$πB.$\frac{4}{5}$πC.$\frac{3}{4}$πD.$\frac{2}{3}$π

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.计算:($\sqrt{2}-1$)2==3-2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案