分析 (1)根据圆周角的性质求得∠COB=2∠CDB=60°,然后证明四边形ABDC为平行四边形,从而证得∠A=∠D=30°,根据三角形的内角和定理证得∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,从而证得AC是⊙O的切线;
(2)根据平行线的性质得出∠OBD=30°,∠BEO=90°,然后通过直角三角函数即可求得BE,根据垂径定理从而求得BD的长.
解答
(1)证明:连接OC,OC交BD于E,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∵∠CDB=∠OBD,
∴CD∥AB,
又∵AC∥BD,
∴四边形ABDC为平行四边形,
∴∠A=∠D=30°,
∴∠OCA=180°-∠A-∠COB=90°,即OC⊥AC,
又∵OC是⊙O的半径,
∴AC是⊙O的切线;
(2)解:由(1)知,OC⊥AC.
∵AC∥BD,
∴OC⊥BD,
∴BE=DE,
∵在直角△BEO中,∠OBD=30°,OB=6,
∴BE=OBcos30°=3$\sqrt{3}$,
∴BD=2BE=6$\sqrt{3}$.
点评 本题考查了平行四边形的判定和性质,切线的判定,平行线的性质,解直角三角函数等,连接OC构建直角三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①② | B. | ①③ | C. | ①③④ | D. | ②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$π | B. | $\frac{4}{5}$π | C. | $\frac{3}{4}$π | D. | $\frac{2}{3}$π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com