【题目】在
中,已知
,
于
,
,
,则
的长为________.
【答案】6
【解析】
由题意可得出△ABD≌△ABE,△CBD≌△CBF,推出∠DBA=∠EBA,∠DBC=∠FBC,求出四边形BEGF是正方形,设BD=x,则BE=EG=GF=x,AG=x-3,CG=x-2,在Rt△,AGC中根据勾股定理求出(x-3)2+(x-2)2=(2+3)2,求出即可.
分别以BA和BC为对称轴在△ABC的外部作△BDA和△BDC的对称图形△BEA和△BFC,如图,
![]()
由题意可得:△ABD≌△ABE,△CBD≌△CBF
∴∠DBA=∠EBA,∠DBC=∠FBC,
又∵
∴
又∵AD⊥BC,
∴
又∵BE=BD,BF=BD,
∴BE=BF,
∴四边形BEGF是正方形,
设BD=x,则BE=EG=GF=x,
∵CD=2,AD=3,
∴BE=2,CF=3
∴AG=x3,CG=x2,
在Rt△,AGC中,
(舍去),
即BD=6,
故答案为:6.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,现给出以下四个结论:(1)AE=CF;(2)△EPF是等腰直角三角形;(3)S四边形AEPF=
S△ABC;(4)当∠EPF在△ABC内绕顶点P旋转时始终有EF=AP.(点E不与A、B重合),上述结论中是正确的结论的概率是( )
![]()
A.1个B.3个C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.
(1)如图1,当点D在线段BC上,如果∠BAC=90°,则∠BCE=________度;
(2)设
,
.
①如图2,当点在线段BC上移动,则
,
之间有怎样的数量关系?请说明理由;
②当点在直线BC上移动,则
,
之间有怎样的数量关系?请直接写出你的结论.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连接EC,若CE=5,则BC等于( )
![]()
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,
,
,
与
交于点
.有下列结论:
![]()
①
;
②
;
③ 点
在线段
的垂直平分线上;
④
、
分别平分
和
;
以上结论正确的个数有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图
,分别沿长方形纸片
和正方形纸片
的对角线
,
剪开,拼成如图
所示的四边形
,若中间空白部分四边形恰好是正方形
,且四边形
的面积为
,则正方形的面积是( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读解答:
分解下列因式:
,
,![]()
(1)观察上述三个多项式的系数,有
,
,
,
于是某同学猜测:若多项式
是完全平方式,那么实系数
,
,
之间一定存在某种关系,请你用数学式子表示系数
,
,
之间的关系_______.
(2)解决问题:在实数范围内,若关于 x 的多项式
是完全平方式,且
、
都是正整数,
,求
、
的值;
(3)在实数范围内,若关于
的多项式
和
都是完全平方式,利用(1)中的规律,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点O是原点,顶点B在y轴上,两条对角线AC、OB的长分别是6和4,反比例函数
的图象经过点C.
(1)写出点A的坐标,并求k的值;
(2)将菱形OABC沿y轴向下平移多少个单位长度后点A会落在该反比例函数的图象上?
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:y=﹣
x+4与y轴、x轴分别交于
E、F,边长为2
的等边△ABC,边BC在x轴上,将此三角形沿着x轴的正方向平移,在平移过程中,得到△A1B1C1,当点B1与原点重合时,解答下列问题:
(1)求出点A1的坐标,并判断点A1是否在直线l上;
(2)求出边A1C1所在直线的解析式;
(3)在坐标平面内找一点P,使得以P、A1、C1、F为顶点的四边形是平行四边形,请直接写出P点坐标.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com