精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点BBHPH,点H为垂足,BH交⊙O于点C,连接BD,CD.

(1)求证:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直径的长.

【答案】(1)证明见解析;(2)4;

【解析】

(1)利用切线性质得OD⊥PH,则可证明BH∥OD,利用平行线的性质得∠2=∠3,加上∠1=∠3,从而得到∠1=∠2;
(2)连接OC,如图,先证明△OCB为等边三角形得到∠BOC=60°,再利用平行线的性质得到∠BOD=120°,所以∠DOC=60°,然后判定△OCD为等边三角形,则OD=CD=2,从而得到⊙O的直径的长.

(1)证明:∵PD切⊙O于点D,

∴OD⊥PH,

∵BH⊥PH,

∴BH∥OD,

∴∠2=∠3,

∵OD=OB,

∴∠1=∠3,

∴∠1=∠2,

∴BD平分∠ABH;

(2)解:连接OC,如图,

∵∠1=30°,

∴∠2=∠3=30°,

∴∠OBC=60°,

∴△OCB为等边三角形,

∴∠BOC=60°,

∵BC∥OD,

∴∠BOD=180°﹣∠OBC=120°,

∴∠DOC=60°,

OC=OD,

∴△OCD为等边三角形,

∴OD=CD=2,

∴⊙O的直径的长为4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.

1)不妨设该种品牌玩具的销售单价为x元(x40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:

销售单价(元)

x

销售量y(件)

    

销售玩具获得利润w(元)

    

2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.

3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把矩形纸片ABCD沿EF翻折,点A恰好落在BC边的A′处,若AB= EFA=60°,则四边形A′B′EF的周长是(

A. 1+3 B. 3+ C. 4+ D. 5+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,度,的中点,。求证:

1

2为等腰直角三角形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,MN⊙O的直径,∠AMN=40°,点B为弧AN的中点,点P是直径MN上的一个动点,如果PA+PB的最小值为,那么⊙O的直径等于(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若△ABC内接于⊙O,OC=6cm,AC=cm,则∠B等于   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在半径为4的⊙O中,圆心角∠AOB=90°,以半径OA、OB的中点C、F为顶点作矩形CDEF,顶点D、E在⊙O的劣弧上,OMDE于点M.试求图中阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在⊙O中,点P为直径BA延长线上一点,PD切⊙O于点D、过点BBHPH,点H为垂足,BH交⊙O于点C,连接BD,CD.

(1)求证:BD平分∠ABH;

(2)若CD=2,ABD=30°,求⊙O的直径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,点P是正方形ABCD内的一点,连PA、PB、PC.

(1)将PAB绕点B顺时针旋转90°PCB的位置(如图1).

设AB的长为a,PB的长为bb<a),求PAB旋转到PCB的过程中边PA所扫过区域(图1中阴影部分)的面积;

若PA=2,PB=4,APB=135°,求PC的长.

(2)如图2,若PA2+PC2=2PB2,请说明点P必在对角线AC上.

查看答案和解析>>

同步练习册答案