【题目】如图,在Rt△ABC中,∠ABC=,BC=6cm,AC=10cm。
(1)求AB的长;
(2)若P点从点B出发,以2cm/s的速度在BC所在的直线上运动,设运动时间为t秒,那么当t为何值时,△ACP为等腰三角形。
【答案】(1)AB=8 cm;(2)3或2或8或
【解析】
(1)直接利用勾股定理计算AB长即可;
(2)此题要分四种情况:当P向左移动时:分CA=PA,AP=PC,PC=AC三种情况,当P向右移动时,AC=CP分别计算出t的值即可.
(1)∵∠ABC=90°,BC=6cm,AC=10cm,
∴AB=;
(2)如图所示:
当P向左移动时,PB=2t,
①若AP=AC=10cm,
则:BP=,
t=3;
②若PC=AC=10cm,则BP=4cm,
2t=4,
解得:t=2;
③若AP=PC,则PC=6+2t,AP=6+2t,
解得:t=,
④当P向右移动时,BP=2t,则CP=2t-6,
当AC=CP时,2t-6=10,
解得:t=8.
答:当t为3,2,8和时,△ACP为等腰三角形.
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),则花园面积S的最大值为_____m2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是正方形ABCD中CD边上一点,以点A为中心把△ADE顺时针旋转90°。
(1)在图中画出旋转后的图形;
(2)若旋转后E点的对应点记为M,点F在BC上,且∠EAF=45°,连接EF。
①求证:△AMF≌△AEF;
②若正方形的边长为6,AE=,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx-3与轴交于,两点(点在点左侧),A(-1,0),B(3,0),直线与抛物线交于,两点,其中点的横坐标为。
(1)求抛物线的函数解析式;
(2)是线段上的一个动点,过点作轴的平行线交抛物线于点,求线段长度的最大值;
(3)点是抛物线上的动点,在轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点和在直线上的射影分别为点和,那么线段叫做线段在直线上的射影.
如图①,已知平面内一点与一直线,如果过点作直线,垂足为,那么垂足叫做点在直线上的射影;如果线段的两个端点和在直线上的射影分别为点和,那么线段叫做线段在直线上的射影.
如图②,、为线段外两点,,,垂足分别为、.
则点在上的射影是________点,点在上的射影是________点,
线段在上的射影是________,线段在上的射影是________;
根据射影的概念,说明:直角三角形斜边上的高是两条直角边在斜边上射影的比例中项.(要求:画出图形,写出说理过程.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系,根据图象解决以下问题:
(1)甲、乙两地的距离为 .
(2)慢车的速度为 ,快车的速度为 ;
(3)求当为多少时,两车之间的距离为,请通过计算求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有这样一个问题:探究函数的图象与性质,小东根据学习函数的经验,对函数的图象与性质进行了探究,下面是小东的探究过程,请补充完整:
(1)下表是与的几组对应值,则 .
… | … | ||||||||||
… |
(2)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;
(3)当时,随的增大而 ;当时,的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】水果店张阿姨以每斤2元的利润出售一种水果,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.2元,每天可多售出40斤,为保证每天至少售出260斤,张阿姨决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是________斤(用含x的代数式表示);
(2)销售这种水果要想每天赢利300元,张阿姨需将这种水果每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;
(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com