【题目】空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,已知木栏总长为100米.
(1)已知a=20,矩形菜园的一边靠墙,另三边一共用了100米木栏,且围成的矩形菜园面积为450平方米.如图1,求所利用旧墙AD的长;
(2)已知0<α<50,且空地足够大,如图2.请你合理利用旧墙及所给木栏设计一个方案,使得所围成的矩形菜园ABCD的面积最大,并求面积的最大值.
【答案】(1)利用旧墙AD的长为10米.(2)见解析.
【解析】
(1)按题意设出AD,表示AB构成方程;
(2)根据旧墙长度a和AD长度表示矩形菜园长和宽,注意分类讨论s与菜园边长之间的数量关系.
(1)设AD=x米,则AB=米
依题意得,=450
解得x1=10,x2=90
∵a=20,且x≤a
∴x=90舍去
∴利用旧墙AD的长为10米.
(2)设AD=x米,矩形ABCD的面积为S平方米
①如果按图一方案围成矩形菜园,依题意
得:
S=,0<x<a
∵0<a<50
∴x<a<50时,S随x的增大而增大
当x=a时,S最大=50a-a2
②如按图2方案围成矩形菜园,依题意得
S=,a≤x<50+
当a<25+<50时,即0<a<时,
则x=25+时,S最大=(25+)2=,
当25+≤a,即≤a<50时,S随x的增大而减小
∴x=a时,S最大==,
综合①②,当0<a<时,-()=>0
>,此时,按图2方案围成矩形菜园面积最大,最大面积为平方米
当≤a<50时,两种方案围成的矩形菜园面积最大值相等.
∴当0<a<时,围成长和宽均为(25+)米的矩形菜园面积最大,最大面积为平方米;
当≤a<50时,围成长为a米,宽为(50-)米的矩形菜园面积最大,最大面积为()平方米.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=,BC=6cm,AC=10cm。
(1)求AB的长;
(2)若P点从点B出发,以2cm/s的速度在BC所在的直线上运动,设运动时间为t秒,那么当t为何值时,△ACP为等腰三角形。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小孟同学将等腰直角三角板ABC(AC=BC)的直角顶点C放在一直线m上,将三角板绕C点旋转,分别过A,B两点向这条直线作垂线AD,BE,垂足为D,E.
(1)如图1,当点A,B都在直线m上方时,猜想AD,BE,DE的数量关系是 ;
(2)将三角板ABC绕C点按逆时针方向旋转至图2的位置时,点A在直线m上方,点B在直线m下方.(1)中的结论成立吗?请你写出AD,BE,DE的数量关系,并证明你的结论.
(3)将三角板ABC继续绕C点逆时针旋转,当点A在直线m的下方,点B在直线m的上方时,请你画出示意图,按题意标好字母,直接写出AD,BE,DE的数量关系结论 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车早晨7∶00出发,从甲地驶往乙地送货.如图是货车行驶路程y(km)与行驶时间x(h)的完整的函数图像(其中点B、C、D在同一条直线上),小明研究图像得到了以下结论:
①甲乙两地之间的路程是100 km;
②前半个小时,货车的平均速度是40 km/h;
③8∶00时,货车已行驶的路程是60 km;
④最后40 km货车行驶的平均速度是100 km/h;
⑤货车到达乙地的时间是8∶24,
其中,正确的结论是( )
A.①②③④B.①③⑤C.①③④D.①③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com