【题目】已知:如图,AC⊥BC,CD∥FG,∠1=∠2,试说明:DE⊥AC.
【答案】证明:∵CD∥FG,
∴∠2=∠DCB,
∵∠1=∠2,
∴∠1=∠DCB,
∴DE∥BC,
∵AC⊥BC,
∴DE⊥AC.
【解析】首先依据平行线的性质可证明∠2=∠DCB,然后通过等量代换得∠DCB=∠1,接下来,依据内错角相等两直线平行可得到DE∥BC,最后,依据利用平行线的性质得出结论即可.
【考点精析】关于本题考查的垂线的性质和平行线的判定与性质,需要了解垂线的性质:1、过一点有且只有一条直线与己知直线垂直.2、垂线段最短;由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质才能得出正确答案.
科目:初中数学 来源: 题型:
【题目】按一定规律排列的一列数:21 , 22 , 23 , 25 , 28 , 213 , …,若x、y、z表示这列数中的连续三个数,猜想x、y、z满足的关系式是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知数轴上有A,B,C三个点,分别表示有理数﹣24,﹣10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.
(1)用含t的代数式表示P到点A和点C的距离:
PA= , PC=;
(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,运动到终点A.在点Q开始运动后,P,Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】式子7-3-4+18-11=(7+18)+(-3-4-11)是应用了( )
A. 加法交换律 B. 加法结合律
C. 分配律 D. 加法的交换律与结合律
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】代数式2x+3中,当x取a﹣3时,问2x+3是不是a的函数?若不是,请说明理由;若是,也请说明理由,并请以a的取值为横坐标,对应的2x+3值为纵坐标,画出其图象.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com