1£®Èçͼ1£¬ÒÑÖª£ºA£¨0£¬-2£©£¬B£¨-2£¬0£©£¬C£¨1£¬0£©£¬Å×ÎïÏßL1£ºy=ax2+bx+c¾­¹ýA¡¢BÁ½µã£¬ÇÒµãAÊÇÅ×ÎïÏߵĶ¥µã£¬Ö±ÏßACÓëÅ×ÎïÏßµÄÁíÒ»¸ö½»µãÊÇD£®
£¨1£©ÇóÅ×ÎïÏßL1µÄ½âÎöʽºÍÖ±ÏßACµÄ½âÎöʽ£»
£¨2£©EÊÇÅ×ÎïÏßL1ÉÏÒ»µã£¬µ±¡÷EADµÄÃæ»ýµÈÓÚ¡÷OBDµÄÃæ»ýµÄÒ»°ëʱ£¬ÇóµãEµÄ×ø±ê£»
£¨3£©Èçͼ2£¬½«Å×ÎïÏßL1ÏòÏÂÆ½ÒÆm£¨m£¾0£©¸öµ¥Î»µÃµ½Å×ÎïÏßL2£¬ÇÒÅ×ÎïÏßL2µÄ¶¥µãΪµãP£¬½»xÖḺ°ëÖáÓÚµãM£¬½»ÉäÏßACÓÚµãN£¬×÷NQ¡ÍxÖáÓÚµãQ£®
¢ÙÇóÖ¤£º¡ÏNMQ=45¡ã£»
¢Úµ±NPƽ·Ö¡ÏMNQʱ£¬ÇómµÄÖµ£®

·ÖÎö £¨1£©¸ù¾ÝµãACµÄ×ø±êÀ´ÇóÖ±ÏßACµÄ½âÎöʽ£»ÉèÅ×ÎïÏß·½³ÌΪ¶¥µãʽy=ax2-2£¨a¡Ù0£©£¬È»ºó°ÑµãAµÄ×ø±ê´úÈëÀ´ÇóaµÄÖµ¼´¿É£»
£¨2£©ÓÉÅ×ÎïÏßÓëÖ±Ïß½»µãµÄÇ󷨵õ½µãDµÄ×ø±êΪ£¨4£¬6£©£¬×÷DE¡ÍxÖáÓÚH£¬ÔòOH=4£®×÷EF¡ÎyÖᣬ½»Ö±ÏßADÓÚF£¬½áºÏ¡°·Ö¸î·¨¡±À´ÇóÈý½ÇÐεÄÃæ»ý½øÐнâ´ð£®ÐèÒª·ÖÀàÌÖÂÛ£ºµ±EÔÚÖ±ÏßADÏ·½Ê±£¨0£¼t£¼4£©ºÍµ±EÔÚÖ±ÏßADÉÏ·½Á½ÖÖÇé¿öÀ´ÇóEµãµÄ×ø±ê£»
£¨3£©¢ÙÓÉÅ×ÎïÏߵį½ÒƹæÂɵõ½Å×ÎïÏßL2µÄ½âÎöʽΪy=$\frac{1}{2}$x2-2-m£®½áºÏ×ø±êÓëͼÐÎÐÔÖÊÇóµÃMQ=NQ£¬ÓÉ´ËÖ¤µÃ½áÂÛ£»
¢ÚÉèÖ±ÏßMN½»yÖáÓÚT£¬¹ýµãN×÷NH¡ÍyÖáÓÚµãH£®ÓÉ½ÇÆ½·ÖÏßµÄÐÔÖʺ͵ÈÑüÈý½ÇÐεÄÅж¨ÍÆÖª£º¡÷MOT£¬¡÷NHT¾ùΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬½áºÏµÈÑüÖ±½ÇÈý½ÇÐεÄÐÔÖÊÁгö¹ØÓÚmµÄ·½³Ì$\sqrt{2}$£¨2+$\sqrt{2m+4}$£©=$\sqrt{2m+4}$+m+2£¬ÀûÓû»Ôª·¨ÇóµÃmµÄÖµ¼´¿É£®

½â´ð ½â£º£¨1£©Èçͼ1£¬ÉèÖ±ÏßACµÄ½âÎöʽΪy=kx+b£¨k¡Ù0£©£¬
°ÑA£¨0£¬-2£©£¬C£¨1£¬0£©´úÈ룬µÃ
$\left\{\begin{array}{l}{b=-2}\\{0=k+b}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{k=2}\\{b=-2}\end{array}\right.$£®
ÔòÖ±ÏßACµÄ½âÎöʽΪy=2x-2£®
ÉèÅ×ÎïÏß·½³ÌΪy=ax2-2£¨a¡Ù0£©£¬
°ÑB£¨-2£¬0£©´úÈ룬µÃ
0=4a-2Ôòa=$\frac{1}{2}$£¬
ÔòÅ×ÎïÏßL1£ºy=$\frac{1}{2}$x2-2£»

£¨2£©ÓÉ$\left\{\begin{array}{l}{y=\frac{1}{2}{x}^{2}-2}\\{y=2x-2}\end{array}\right.$ ½âµÃ$\left\{\begin{array}{l}{{x}_{1}=4}\\{{y}_{1}=6}\end{array}\right.$£¬$\left\{\begin{array}{l}{{x}_{2}=0}\\{{y}_{2}=-2}\end{array}\right.$£¨ÉáÈ¥£©£¬
¡àµãDµÄ×ø±êΪ£¨4£¬6£©£¬
¡àS¡÷OBD=6£¬
¡àS¡÷EAD=3£®
Èçͼ1£¬×÷DH¡ÍxÖáÓÚH£¬ÔòOH=4£®
×÷EF¡ÎyÖᣬ½»Ö±ÏßADÓÚF£¬
ÉèE£¨t£¬$\frac{1}{2}$t2-2£©£¬ÔòF£¨t£¬2t-2£©£®
µ±EÔÚÖ±ÏßADÏ·½Ê±£¨0£¼t£¼4£©£¬EF=2t-$\frac{1}{2}$t2£¬
S¡÷EAD=S¡÷EFA+S¡÷EFD=$\frac{1}{2}$EF•OG+$\frac{1}{2}$EF•GH=$\frac{1}{2}$EF•OH=2£¨2t-$\frac{1}{2}$t2£©=3£¬
½âµÃt=1»òt=3£¬
¡àE£¨1£¬-$\frac{3}{2}$£©»ò£¨3£¬$\frac{5}{2}$£©£»
µ±EÔÚÖ±ÏßADÉÏ·½Ê±£¨t£¼0»òt£¾4£©£¬EF=$\frac{1}{2}$t2-2t£®
µ±t£¼0ʱ£¬S¡÷EAD=S¡÷EFD-S¡÷EFA=$\frac{1}{2}$EF•OH=2£¨$\frac{1}{2}$t2-2t£©=3£»
µ±t£¾4ʱ£¬S¡÷EAD=S¡÷EFA-S¡÷EFD=$\frac{1}{2}$EF•OH=2£¨$\frac{1}{2}$t2-2t£©=3£»
½âµÃ t=2¡À$\sqrt{7}$£¬
¡àE£¨2+$\sqrt{7}$£¬$\frac{7}{2}$+2$\sqrt{7}$£©»ò£¨2-$\sqrt{7}$£¬$\frac{7}{2}$-2$\sqrt{7}$£©£®
×ÛÉÏ£¬EµÄ×ø±êΪ£º£¨1£¬-$\frac{3}{2}$£©»ò£¨3£¬$\frac{5}{2}$£©»ò£¨2+$\sqrt{7}$£¬$\frac{7}{2}$+2$\sqrt{7}$£©»ò£¨2-$\sqrt{7}$£¬$\frac{7}{2}$-2$\sqrt{7}$£©£®

£¨3£©¢ÙÅ×ÎïÏßL2µÄ½âÎöʽΪy=$\frac{1}{2}$x2-2-m£¬
¡àP£¨0£¬-2-m£©£¬M£¨-$\sqrt{2m+4}$£¬0£©£¬
ÓÉ$\left\{\begin{array}{l}{y=2x-2}\\{y=\frac{1}{2}{x}^{2}-2-m}\end{array}\right.$ µÃN£¨2+$\sqrt{2m+4}$£¬2+2$\sqrt{2m+4}$£©£¬
¡àQ£¨2+$\sqrt{2m+4}$£¬0£©£¬
¡àMQ=2+$\sqrt{2m+4}$+$\sqrt{2m+4}$+=2+2$\sqrt{2m+4}$=NQ£¬
¡à¡ÏNMQ=45¡ã£»
¢ÚÈçͼ2£¬ÉèÖ±ÏßMN½»yÖáÓÚT£¬¹ýµãN×÷NH¡ÍyÖáÓÚµãH£®
¡ßPNƽ·Ö¡ÏMNQ£¬NQ¡ÎTP
¡à¡ÏMNP=¡ÏPNQ=¡ÏTPN£¬
¡àPT=NT£¬
¡ß¡÷MQT£¬¡÷NHT¾ùΪµÈÑüÖ±½ÇÈý½ÇÐΣ¬
¡àMQ=NQ£¬HT=HN£¬
¡àNT=$\sqrt{2}$NH£¬PT=TO+OP=OM+OP
¡à$\sqrt{2}$£¨2+$\sqrt{2m+4}$£©=$\sqrt{2m+4}$+m+2
Áî$\sqrt{m+2}$=t£¬Ôòt2+£¨$\sqrt{2}$-2£©t-2$\sqrt{2}$=0£¬
½âµÃt=2»òt=-$\sqrt{2}$£¨ÉáÈ¥£©£®
¡à$\sqrt{m+2}$=2£¬
¡àm=2£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯ÊýµÄ½âÎöʽµÄÇ󷨣¬µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖʵÄ×ÛºÏÄÜÁ¦ÅàÑø£®Òª»áÀûÓÃÊýÐνáºÏµÄ˼Ïë°Ñ´úÊýºÍ¼¸ºÎͼÐνáºÏÆðÀ´£¬ÀûÓõãµÄ×ø±êµÄÒâÒå±íʾÏ߶εij¤¶È£¬´Ó¶øÇó³öÏß¶ÎÖ®¼äµÄ¹ØÏµ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ËıßÐÎABCDÖУ¬DC¡ÎAB£¬DC=2AB£¬EΪDCµÄÖе㣬Á¬½áAE¡¢EB
£¨1£©Í¼ÖÐÓм¸¸öƽÐÐËıßÐΣ¿
£¨2£©¹Û²ìÏß¶ÎADºÍBE¡¢EAºÍBCÖ®¼äµÄÊýÁ¿¹ØÏµ£¬ËµÃ÷ÄãµÄÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®»¯¼ò²¢ÇóÖµ£º£¨$\frac{x}{x+y}+\frac{2y}{x+y}$£©•£¨$\frac{x+2y}{xy}$£©-1¡Â£¨$\frac{1}{x}+\frac{1}{y}$£©-£¨$\frac{xy}{x+y}$£©2£®ÆäÖÐx=-2016£¬y=$\sqrt{3}$£¬Ð¡Ã÷ÈÏΪ±¾ÌâÖеÄÌõ¼þ¡°x=-2016£¬y=$\sqrt{3}$¡±ÊǶàÓàµÄ£®ÄãÈÏΪСÃ÷µÄ˵·¨ÕýÈ·Âð£¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®µÈÑüÈý½ÇÐÎABCÄÚ½ÓÓÚÔ²O£¬AB=AC£¬ABµÄ´¹Ö±Æ½·ÖÏßMNÓë±ßAB½»ÓÚµãM£¬ÓëACËùÔÚµÄÖ±Ïß½»ÓÚµãN£¬Èô¡ÏANM=70¡ã£¬ÔòÁÓ»¡$\widehat{AC}$Ëù¶ÔµÄÔ²ÐĽǵĶÈÊýΪ160¡ã»ò20¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®¹Û²ìÏÂÁи÷ʽ£º52=25£¬
152=225
252=625
352=1225£¬
¡­
ÄãÄÜ¿ÚËãĩλÊý×ÖÊÇ5µÄÁ½Î»ÊýµÄƽ·½Âð£¿ÇëÓÃÍêȫƽ·½¹«Ê½ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®¼Ñ¼Ñ¹ûÆ·µãÔÚÅú·¢Êг¡ÒÔÿǧ¿ËxÔªµÄ½ø¼Û¹ºÂòijÖÖË®¹ûÈô¸Éǧ¿Ë£¬¹²»¨·Ñ1200Ôª£¬ÓÉÓÚË®¹û³©Ïú£¬ÊÛÍêºóÔٴιºÂò£¬Ã¿Ç§¿ËµÄ½ø¼Û±ÈµÚÒ»´ÎÌá¸ßÁË10%£¬ÓÃ1452ÔªËù¹ºÂòµÄÊýÁ¿±ÈµÚÒ»´Î¶à20ǧ¿Ë£¬¸ù¾ÝÌâÒâÁгö·½³ÌΪ£º$\frac{1452}{£¨1+10%£©x}$-20=$\frac{1200}{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÒÑÖª¡÷ABC¡Õ¡÷ADE£¬BºÍD£¬CºÍEÊǶÔÓ¦¶¥µã£¬ÄÇôBCµÄ¶ÔÓ¦±ßÊÇDE£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Ò»¸ön±ßÐεÄÄڽǺÍÓëËüµÄÍâ½ÇºÍÏàµÈ£¬ÇóÕâ¸ö¶à±ßÐεıßÊýnµÄÖµÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¶þ´Îº¯Êýy=$\frac{1}{2}£¨x-3£©^{2}$µÄͼÏóµÄ¿ª¿Ú·½Ïò£¬¶Ô³ÆÖá·Ö±ðÊÇ£¨¡¡¡¡£©
A£®ÏòÉÏ£¬Ö±Ïßx=3B£®ÏòÏ£¬Ö±Ïßx=3C£®ÏòÉÏ£¬Ö±Ïßx=-3D£®ÏòÏ£¬Ö±Ïßx=-3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸