分析 (1)直接利用等边三角形的性质结合菱形的性质得出△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)利用菱形的判定与性质得出△AFG≌△EFH,得出FG=FH,进而结合角平分线的判定得出答案.
解答
解:(1)如图①所示:连接AE,
∵△ABC与△ECD全等且为等边三角形,
∴四边形ACDE为菱形,连接AD,则AD平分∠EDC,
∴∠ADC=30°,
∵∠ABC=60°,
∴∠BAD=90°,
则△ABD为直角三角形,同理可知,△BED也为直角三角形;
(2)如图②所示:连接AE、BE、AD,则四边形ABCE和四边形ACDE为菱形,
则AC⊥BE,AD⊥CE,设BE,AD相交于F,AC交BE于点G,CE交AD于点H,
则FG⊥AC,FH⊥BC,
由(1)得:∠BEC=∠DAC,∠AEF=∠EAF,
则AF=EF,
在△AFG和△EFH中
$\left\{\begin{array}{l}{∠AGF=∠FHE}\\{∠GFA=∠HFE}\\{AF=EF}\end{array}\right.$,
∴△AFG≌△EFH(AAS),
∴FG=FH,
由到角两边距离相等的点在角平分线上,可知,连接CF,CF为所作的角平分线.
点评 此题主要考查了应用设计与作图,正确应用菱形的判定与性质是解题关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1.5×10-13米 | B. | 15×10-6米 | C. | 1.5×10-5米 | D. | 1.5×10-6米 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com