精英家教网 > 初中数学 > 题目详情

【题目】如图,点DE分别在等边△ABC的边ABBC上,将△BDE沿直线DE翻折,使点B落在B1处.若∠ADB1=70°,则∠CEB1=___

【答案】50°

【解析】

由等边三角形的性质可知:∠B=60°,由邻补角的定义可知∠BDB1=110°,然后由翻折的性质可求得∠BDE=55°,△BDE中由三角形的内角和定理可求得∠BED=65°,然后由翻折的性质可知∠BEB1=130°,从而可求得∠CEB1=50°.

由翻折的性质可知:∠BDE=B1DE
∵∠ADB1=70°,
∴∠BDB1=110°,∴∠BDE=BDB1=×110°=55°,
∵△ABC为等边三角形,
∴∠B=60°.
在△BDE中,∠BED=180°-55°-60°=65°.
由翻折的性质可知:∠BEB1=2×65°=130°
∴∠CEB1=180°-130°=50°.
故答案为:50°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一艘轮船航行到 B 处时,测得小岛 A 在船的北偏东 60°的方向,轮船从 B 处继续向正东方向航行 20 海里到达 C 处时,测得小岛 A 在北船的北偏东 30°的方向.

(1)若小岛 A 到这艘轮船航行路线 BC 的距离是 AD,求 AD 的长.

(2)已知在小岛周围 17 海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一类随机事件概率的计算方法:设试验结果落在某个区域S中的每一点的机会均等,用A表示事件试验结果落在S中的一个小区域M,那么事件A发生的概率P(A)=有一块边长为30cm的正方形ABCD飞镖游戏板,假设飞镖投在游戏板上的每一点的机会均等.求下列事件发生的概率:

(1)在飞镖游戏板上画有半径为5cm的一个圆(如图1),求飞镖落在圆内的概率;

(2)飞镖在游戏板上的落点记为点O,求△OAB为钝角三角形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(﹣3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线y=上.

(1)求抛物线对应的函数关系式;

(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由.

(3)(2)的条件下,若M点是CD所在直线下方该抛物线上的一个动点,过点MMN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为s,求st之间的函数关系式,写出自变量t的取值范围,并求s取大值时,点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1中,于点于点,连接

1)若,求的周长;

2)如图2,若的角平分线于点,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+2ax+c与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.

(1)求抛物线的解析式;

(2)当a>0时,如图所示,若点D是第三象限方抛物线上的动点,设点D的横坐标为m,三角形ADC的面积为S,求出S与m的函数关系式,并直接写出自变量m的取值范围;请问当m为何值时,S有最大值?最大值是多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+cx轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.

(1)求抛物线的解析式;

(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;

(3)N在抛物线对称轴上,点Mx轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,ACBD相交于点O,点EOA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:①SBCE=36;SABE=12;④△AEFACD,其中一定正确的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,平面直角坐标系中,直线 y1=x+3与抛物线y2=﹣+2x 的图象如图,点P是 y2 上的一个动点,则点P到直线 y1 的最短距离为()

A. B. C. D.

查看答案和解析>>

同步练习册答案