【题目】在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(-3-1),B(-4,-3),C(-2,-3).
(1)画出将△ABC向上平移5个单位得到的△A1B1C1,并写出点B1的坐标;
(2)画出△ABC关于点O成中心对称的图形△A2B2C2,并写出点B2的坐标;
(3)观察图形,△A1B1C1和△A2B2C2成中心对称吗?如果成中心对称,那么对称中心的坐标为_____;如果不成中心对称,请说明理由.
【答案】(1)△A1B1C1即为所求,见解析;点B1的坐标为(-4,2);(2)△A2B2C2即为所求,见解析;点B2的坐标为(4,3);(3)(0,2.5).
【解析】
(1)利用网格和平移的性质画出画出将△ABC向上平移5个单位得到的△A1B1C1,然后利用平移规律写出点B1的坐标;
(2)利用网格和中心对称的性质画出△ABC关于点O成中心对称的图形△A2B2C2,然后利用中心对称规律写出点B2的坐标;
(3)根据中心对称的性质即可求解.
解:(1)△A1B1C1即为所求,点B1的坐标为(-4,2);
(2)△A2B2C2即为所求,点B2的坐标为(4,3);
(3)△A1B1C1和△A2B2C2成中心对称吗,对称中心的坐标为(0,2.5).
故答案为:(0,2.5).
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2+bx+c的图象过点A(﹣3,0)和点B(1,0),且与y轴交于点C,D点在抛物线上且横坐标是﹣2.
(1)求抛物线的解析式;
(2)抛物线的对称轴上有一动点P,求出PA+PD的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知□ABCD的面积为100,P为边CD上的任一点,E,F分别为线段AP,BP的中点,则图中阴影部分的总面积为( )
A. 30B. 25C. 22.5D. 20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AB=5,BC=4,点G为边BC的中点,点D从点C出发沿CA向点A运动,到点A停止,以GD为边作正方形DEFG,则点E运动的路程为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.
(1)这次调查的市民人数为_____人;
(2)补全条形统计图;
(3)计算扇形统计图中等级C对应的圆心角的度数;
(4)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(-6)-(+5)+(-7)-(-4)
(2) (-8)(-4)
(3)
(4)
(5)
(6)()
(7)x+(5x+3y)-(3x-2y)
(8)(5a2+2a-1)-4(3-2a+a2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.
(1)求此抛物线的解析式;
(2)直接写出点C和点D的坐标;
(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分类是研究问题的一种常用方法,我们在学习有理数和代数式的相关概念、运算法则时,除了 学到了具体知识,还学会了分类思考,在进行分类时,我们首先应明确分类标准,其次要做到分类时既不 重复,也不遗漏。
(初步感受)(1)在对多项式,进行分类时,如果以项数作为分类标准,可以分为哪几类?如果以次数作为分类标准,可以分为哪几类?
(简单运用)(2)已知 a, b 是有理数,比较 a b 与 a b的大小;
(深入思考)(3)已知 a, b c 是有理数,且 ca b>ca b ,判断 b, c 的符号,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】央视热播节目“朗读者”激发了学生的阅读兴趣.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
(1)此次共调查了 名学生;
(2)将条形统计图补充完整;
(3)图2中“小说类”所在扇形的圆心角为 度;
(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com