【题目】为响应党中央“下好一盘棋,共护一江水”的号召,某治污公司决定购买甲、乙两种型号的污水处理设备共10台.经调查发现:购买一台甲型设备比购买一台乙型设备多2万元,购买2台甲型设备比购买3台乙型设备少6万元,且一台甲型设备每月可处理污水240吨,一台乙型设备每月可处理污水200吨.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?
(2)若治污公司购买污水处理设备的资金不超过109万元,月处理污水量不低于2080吨.
①求该治污公司有几种购买方案;
②如果为了节约资金,请为该公司设计一种最省钱的购买方案.
【答案】(1)甲12万元/台,乙10万元/台;(2)①共3种方案;②购买甲2台,乙8台,总购价104万元,最省钱
【解析】
(1)设每台甲型设备和每台乙型设备各需要万元、万元,由题意得:买一台甲型设备的价钱-买一台乙型设备的价钱=2万元;购买3台乙型设备-购买2台甲型设备比=6万元.根据等量关系列出方程组,解方程组即可;
(2)①设应购置甲型号的污水处理设备台,则购置乙型号的污水处理设备台,由于要求资金不能超过109万元,即购买资金万元;再根据“每台甲型设备每月处理污水240吨,每台乙型设备每月处理污水200吨,每月处理的污水不低于2040吨”可得不等关系:吨;把两个不等式组成不等式组,由此求出关于甲型号处理机购买的几种方案;
②设总购价,根据(2)①的结论,分类讨论,选择符合题意得那个方案即可.
(1)设每台甲型设备和每台B型设备各需要万元、万元,
由题意得:,
解得:
答:每台甲型设备和每台乙型设备各需要12万元、10万元;
(2)①设应购置甲型号的污水处理设备台,则购置乙型号的污水处理设备台,由题意得:
,
解得:,
∴,3,4,共3种方案;
②设总购价万元,
由题意得:
,
当时,,
当时,,
当时,,
∴当,即购买甲2台,乙8台,总购价104万元,最省钱.
科目:初中数学 来源: 题型:
【题目】在图中网格上按要求画出图形,并回答问题:
(1)如果将三角形平移,使得点平移到图中点位置,点、点的对应点分别为点、点,请画出三角形;
(2)画出三角形关于点成中心对称的三角形.
(3)三角形与三角形______(填“是”或“否”)关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2+(2k+1)x+k2=0①有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程①的两个实数根分别为x1,x2,当k=1时,求x12+x22的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90,BC=4,AC=3,线段PQ⊥BC于Q(如图,此时点Q与点B重合),PQ=AB,当点P沿PB向B滑动时,点Q相应的从B沿BC向C滑动,始终保持PQ=AB不变,当△ABC与△PBQ全等时,PB的长度等于________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,点,点分别在轴正半轴和负半轴上,.
(1)如图1,若,,求的度数;
(2)在和内作射线,,分别与过点的直线交于第一象限内的点和第三象限内的点.
①如图2,若,恰好分别平分和,求的值;
②若,,当,则的取值范围是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到条折痕,那么对折四次可以得到( )条折痕.如果对折次, 可以得到( )条折痕
A.,B.,C.,D.,
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE与DE相交于点E.
(1)求证:四边形CODE是矩形;
(2)若AB=10,AC=12,求四边形CODE的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系 xOy 中,菱形 ABOC 的顶点 O 在坐标原点,边 BO 在 x 轴的负半轴上,顶点 C的坐标为(﹣3,4),反比例函数 y 的图象与菱形对角线 AO 交于 D 点,连接 BD,当 BD⊥x 轴时,k的值是( )
A.B.C.﹣12D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com