【题目】已知将一副三角板(直角三角板OAB和直角三角板OCD,∠AOB=90°,∠ABO=45°,∠CDO=90°,∠COD=60°)
(1)如图1摆放,点O、A、C在一直线上,则∠BOD的度数是多少?
(2)如图2,将直角三角板OCD绕点O逆时针方向转动,若要OB恰好平分∠COD,则∠AOC的度数是多少?
(3)如图3,当三角板OCD摆放在∠AOB内部时,作射线OM平分∠AOC,射线ON平分∠BOD,如果三角板OCD在∠AOB内绕点O任意转动,∠MON的度数是否发生变化?如果不变,求其值;如果变化,说明理由.
【答案】(1)30°;(2) 60°;(3) 总是75°
【解析】
利用三角板角的特征和角平分线的定义解答,
(1)根据余角的定义即可得到结论;
(2)由角平分线的定义得到∠BOC= ∠COD=×60°=30°,根据余角的定义即可得到结论;
(3)根据角平分线的定义得到(∠BOD+∠AOC)=×30°=15°,然后根据角的和差即可得到结果.
解:(1);
(2)∠BOC=∠COD=×60°=30°,
∴∠AOC=∠AOB﹣∠BOC=90°﹣30°=60°;
(3)∠BOD+∠AOC=90°﹣∠COD=90°﹣60°=30°,
(∠BOD+∠AOC)=×30°=15°,
∠MON=(∠BOD+∠AOC)+∠COD=15°+60°=75°
即∠MON的度数不会发生变化,总是75°.
科目:初中数学 来源: 题型:
【题目】如图,将带有45°和30°两块直角三角尺的直角顶点C叠放在一起,
(1)若∠DCE=25°,则∠ACB=______;若∠ACB=150°,则∠DCE=______;
(2)猜想∠ACB与∠DCE的大小有何特殊关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.
(1)求证:△AEF≌△DEB;
(2)证明四边形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,AC=BC,斜边AB=2,O是AB的中点,以O为圆心,线段OC的长为半径画圆心角为90°的扇形OEF,弧EF经过点C,则图中阴影部分的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过A(-1,0)、B(4,5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”、“了解”、“了解较少”、“不了解”四类,并将检查结果绘制成下面两个统计图.
⑴ 本次调查的学生共有 人,“了解较少”的学生人数所占的百分比为 ;
⑵ 补全条形统计图;
⑶ 若该校共有1300名学生,请根据统计结果估算该校“不了解”的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),为等腰三角形,,点是底边上的一个动点,,.
(1)用表示四边形的周长为 ;
(2)点运动到什么位置时,四边形是菱形,请说明理由;
(3)如果不是等腰三角形图(2),其他条件不变,点运动到什么位置时,四边形是菱形(不必说明理由).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某开发公司生产的960件新产品需要精加工后才能投放市场。现有甲、乙两个工厂都想加工这批产品,已知甲厂单独加工这批产品比乙工厂单独加工完这批产品多用20天,而甲工厂每天加工的数量是乙工厂每天加工数量的,甲、乙两个工厂每天各能加工多少个新产品?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com