【题目】如图,在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8.
(1)求证:四边形ABCD是菱形;
(2)过点A作AH⊥BC于点H,求AH的长.
【答案】(1)证明见解析;(2)
【解析】试题(1)由平行四边形的对角线互相平分得到△AOB的两条边OA、OB的长度,则根据勾股定理的逆定理判定∠AOB=90°,即平行四边形的对角线互相垂直平分,故四边形ABCD是菱形.
(2)根据菱形的不变性,用不同方法求面积:平行四边形的面积=菱形的面积,可求解.
试题解析:(1)证明:∵在ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,BD=8,
∴AO=AC=3,BO=BD=4,
∵AB=5,且32+42=52,
∴AO2+BO2=AB2,
∴△AOB是直角三角形,且∠AOB=90°,
∴AC⊥BD,
∴四边形ABCD是菱形;
(2)解:如图所示:
∵四边形ABCD是菱形,
∴BC=AB=5,
∵S△ABC=ACBO=BCAH,
∴×6×4=×5×AH,
解得:AH=.
科目:初中数学 来源: 题型:
【题目】2019年11月20日-23日,首届世界大会在北京举行.某校的学生开展对于知晓情况的问卷调查,问卷调查的结果分为、、、四类,其中类表示“非常了解”,类表示“比较了解”,类表示“基本了解”,类表示“不太了解”,并把调查结果绘制成如图所示的两个统计图表(不完整).
根据上述信息,解答下列问题:
(1)这次一共调查了多少人;
(2)求“类”在扇形统计图中所占圆心角的度数;
(3)请将条形统计图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点D、点E为BC边上两点,且AC=DC,
(1)若∠EAC=∠EAF,EF⊥AB且AB=5,BC=4,求线段DE的长度;
(2)若EF⊥AD于点P,CF⊥AE于点Q,且AE=CF,求证:DE+PF=AP
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某文具店老板第一次用1000元购进一批文具,很快销售完毕;第二次购进时发现每件文具进价比第一次上涨了2 5元.老板用2500元购进了第二批文具,所购进文具的数量是第一次购进数量的2倍,同样很快销售完毕,两批文具的售价均为每件15元.
(1)问第二次购进了多少件文具?
(2)文具店老板第一次购进的文具有3% 的损耗,第二次购进的文具有5% 的损耗,问文具店老板在这两笔生意中是盈利还是亏本?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,,连结AC,过点C作直线l∥AB,点P是直线l上的一个动点,直线PA与⊙O交于另一点D,连结CD,设直线PB与直线AC交于点E.
(1)求∠BAC的度数;
(2)当点D在AB上方,且CD⊥BP时,求证:PC=AC;
(3)在点P的运动过程中
①当点A在线段PB的中垂线上或点B在线段PA的中垂线上时,求出所有满足条件的∠ACD的度数;
②设⊙O的半径为6,点E到直线l的距离为3,连结BD,DE,直接写出△BDE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】威丽商场销售A、B两种商品,售出1件A种商品和4件B种商品所得利润为600元;售出3件A种商品和5件B种商品所得利润为1100元.
(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元?
(2)由于需求量大,A、B两种商品很快售完,威丽商场决定再一次购进A、B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么威丽商场至少需购进多少件A种商品?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:矩形ABCD中,AB=4,BC=3,点M、N分别在边AB、CD上,直线MN交矩形对角线 AC于点E,将△AME沿直线MN翻折,点A落在点P处,且点P在射线CB上.
(1)如图1,当EP⊥BC时,求CN的长;
(2) 如图2,当EP⊥AC时,求AM的长;
(3) 请写出线段CP的长的取值范围,及当CP的长最大时MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为2的菱形ABCD中,∠A=60°,M是边AD的中点,N是AB上一动点(不与A、B重合),将△AMN沿MN所在直线翻折得到△A1MN,连接A1C,画出点N从A到B的过程中A1的运动轨迹,A1C的最小值为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com