精英家教网 > 初中数学 > 题目详情

【题目】如图,ABC 在平面直角坐标系中,点 ABC 的坐标分别为 A-2,4),B4,2),C2-1.

)请在平面直角坐标系内,画出ABC 关于 x 轴的对称图形A1B1C1,其中,点 ABC 的对应点分别为A1B1C1

)请写出点C2-1)关于直线m(直线m上格点的横坐标都为-1)对称的点C2的坐标.

【答案】)见解析;(C2的坐标为:(-4-1.

【解析】

)根据关于x轴对称的点的坐标特点画出A1B1C1即可;

)在平面直角坐标系中画出点C2即可写出点C2的坐标.

)如图所示,A1B1C1即为所画;

)画出点C2,如上图可得出点C2的坐标为:(-4-1.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】课题学习:设计概率模拟实验.

在学习概率时,老师说:掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是.”小海、小东、小英分别设计了下列三个模拟实验:

小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;

小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上18个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;

小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.

根据以上材料回答问题:

小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB分别与两坐标轴交于点A(4,0).B(0,8),点C的坐标为(2,0).

(1)求直线AB的解析式;

(2)在线段AB上有一动点P.

过点P分别作x,y轴的垂线,垂足分别为点E,F,若矩形OEPF的面积为6,求点P的坐标.

连结CP,是否存在点P,使相似,若存在,求出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCDEFABE,交CDFEP平分∠AEFFP平分∠CFE,直线MN经过点P并与ABCD分别交于点MN.

(1)如图①,求证:EM+FNEF

(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EMFNEF三条线段的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列关于概率的说法,错误的是( )

A. 明天下雨的概率是80%,即明天80%的时间都下雨;

B. 做投掷硬币试验时,投掷的次数足够多时,正面朝上的频率就越接近于

C. “13人中至少有2人生肖相同”,这是一个必然事件。

D. 连掷两枚骰子,它们的点数相同的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】E、F分别是边长为4的菱形ABCD中边BC、CD上的点,∠B=∠EAF=60°,△AEF的周长为,则的最小值是_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,EAB的中点,连接DE、CE.

(1)求证:ADE≌△BCE;

(2)若AB=6,AD=4,求CDE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若二次函数的图象与轴交于A、B两点(A点在B点左侧),顶点为

(1)求A、B、三点坐标。

(2)在平面直角坐标系中,用列表描点法作出抛物线图象(如图),并根据图象回答,为何值时,函数值大于0?

(3)将此抛物线向下平移2个单位,请写出平移后的解析式。

查看答案和解析>>

同步练习册答案