【题目】2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度.小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理绘制成下面的统计图(图1,图2).
小明发现每月每户的用水量在5m3-35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明绘制的图表和发现的信息,完成下列问题:
(Ⅰ)n= ,小明调查了 户居民,并补全图2;
(Ⅱ)每月每户用水量的中位数和众数分别落在什么范围?
(Ⅲ)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
【答案】(1)n=210,96户;(2)中位数落在15-20之间;众数落在10-15之间;(3)1050户.
【解析】
(1)首先根据圆周角等于360°,求出的值是多少即可;然后用“视水价格调价涨幅抱无所谓态度”的居民的户数除以它占被调查的居民户数的分率,求出小明调查了多少户居民;最后求出每月每户的用水量在15m3-20m3之间的居民的户数,补全图1即可.
(2)根据中位数和众数的含义分别进行解答即可.
(3)根据分数乘法的意义,用小明所在小区居民的户数乘以“视调价涨幅采取相应的用水方式改变”的居民户数占被调查的居民户数的分率,求出“视调价涨幅采取相应的用水方式改变”的居民户数有多少即可.
解:(1)n=360-30-120=210,
∵8÷=96(户)
∴小明调查了96户居民.
每月每户的用水量在15m3-20m3之间的居民的户数是:
96-(15+22+18+16+5)
=96-76
=20(户).
(2)96÷2=48(户),15+12=37(户),15+22+20=57(户),
∵每月每户的用水量在5m3-15m3之间的有37户,每月每户的用水量在5m3-20m3之间的有57户,
∴把每月每户用水量这组数据从小到大排列后,第48个、第49个数在15-20之间,
∴第48个、第49个数的平均数也在15-20之间,
∴每月每户用水量的中位数落在15-20之间;
∵在这组数据中,10-15之间的数出现的次数最多,出现了22次,
∴每月每户用水量的众数落在10-15之间.
(3)∵1800×=1050(户),
视调价涨幅采取相应的用水方式改变”的居民户数有1050户.
科目:初中数学 来源: 题型:
【题目】依据下列解方程的过程,请在前面括号内填写变形步骤,在后面的括号内填写变形依据.
解:原方程可变形为,
去分母,得.(____________________)
去括号,得.(____________________)
移项,得.(____________________)
合并,得.(合并同类项)
(______),得.(______________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用橡皮泥做一个棱长为4cm的正方体.
(1)如图(1),在顶面中心位置处从上到下打一个边长为1cm的正方形通孔,打孔后的橡皮泥的表面积是多少?;
(2)如果在第(1)题打孔后,再在正面中心位置处(按图(2)中的虚线)从前到后打一个边长为1cm的正方形通孔,那么打孔后的橡皮泥的表面积为是多少?;
(3)如果把第(2)题中从前到后所打的正方形通孔扩大成一个长xcm、宽1cm的长方形通孔,能不能使所得橡皮泥的表面积为130cm2?如果能,请求出x;如果不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是
A.(0,0)B.(0,1)C.(0,2)D.(0,3)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,⊥,∥,,.点在线段上,联结,过点作的垂线,与相交于点.设线段的长为.
(1)当时,求线段的长;
(2)设△的面积为,求关于的函数解析式,并写出函数的定义域;
(3)当△∽△时,求线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】给出以下命题:
①函数是偶函数,但不是奇函数;
②已知回归直线方程为,样本点的中心为,则;
③函数图象关于点对称且在上单调递增;
④根据党中央关于“精准”脱贫的要求,我州某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数有种;
⑤已知双曲线的左、右焦点分别为,过的直线交双曲线右支于两点,且,若,则双曲线的离心率为.
其中正确的命题序号为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系xOy中的位置如图所示.
(1)作△ABC关于点C成中心对称的△A1B1C1.
(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2.
(3)在x轴上求作一点P,使PA1+PC2的值最小,并写出点P的坐标(不写解答过程,直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动到点A停止,设点P运动路程为x,△ABP的面积为y,如果y关于x的函数图象如图(2)所示,则矩形ABCD的面积是( )
A. 10B. 16C. 20D. 36
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂为了检验甲、乙两车间生产的同一种零件的直径的合格情况,随机各抽取了10个样品进行检测,已知零件的直径均为整数,整理数据如下:(单位:)
170~174 | 175~179 | 180~184 | 185~189 | |
甲车间 | 1 | 3 | 4 | 2 |
乙车间 | 0 | 6 | 2 | 2 |
(1)分别计算甲、乙两车间生产的零件直径的平均数;
(2)直接说出甲、乙两车间生产的零件直径的中位数都在哪个小组内,众数是否在其相应的小组内?
(3)若该零件的直径在的范围内为合格,甲、乙两车间哪一个车间生产的零件直径合格率高?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com