精英家教网 > 初中数学 > 题目详情

【题目】在数轴上,点A对应的数是-6,点B对应的数是-2,点O对应的数是0.动点PQ分别从AB同时出发,以每秒3个单位,每秒1个单位的速度向右运动。在运动过程中,线段PQ的长度始终是另一线段长的整数倍,这条线段是(

A.PBB.OPC.OQD.QB

【答案】C

【解析】

设运动时间为t秒,根据题意可知,然后分分类讨论:①当动点PQ在点O左侧运动时,②当动点PQ运动到点O右侧时,利用各线段之间的和、差关系即可解答.

解:设运动时间为t秒,

由题意可知:

①当动点PQ在点O左侧运动时,

②当动点PQ运动到点O右侧时,

综上所述,在运动过程中,线段PQ的长度始终是线段OQ的长的整数倍,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=8,BC=6,P是AC上一点,过P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△EPD.(设AP=x)

(1)若点E落在边BC上,求AP的长;

(2)当AP为何值时,△EDB为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在四边形ABCD中,ABCDB=90°,点PBC边上,当∠APD=90° 时,可知ABP∽△PCD.(不要求证明)

1)探究:如图②,在四边形ABCD中,点PBC边上,当∠B=C=APD时,求证:ABP∽△PCD

2)拓展:如图③,在ABC中,点P是边BC的中点,点DE分别在边ABAC上若∠B=C=DPE=45°BC=8CE=6,则DE的长为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在ABC中,BECF分别是ACAB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接ADAG

1)求证:AD=AG

2ADAG的位置关系如何,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平行四边形ABCD的边ABx轴上,点C的坐标为(﹣54),点Dy轴的正半轴上,经过点A的直线yx1y轴交于点E,将直线AE沿y轴向上平移nn0)个单位长度后,得到直线l,直线l经过点C时停止平移.

1)点A的坐标为   ,点B的坐标为   

2)若直线ly轴于点F,连接CF,设△CDF的面积为S(这里规定:线段是面积为0的三角形),求Sn之间的函数关系式,并写出n的取值范围;

3)易知AEAD于点A,若直线l交折线ADDC于点P,当△AEP为直角三角形时,请直接写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】20筐白菜,以每筐30千克为标准,超过或不足的分别用正、负来表示,记录如下:

与标准质量的差(单位:千克)

-3

-2

-1.5

0

1

2.5

筐数

1

4

2

3

2

8

120筐白菜中,最重的一筐比最轻的一筐要重多少千克?

2)与标准质量比较,20筐白菜总计超过或不足多少千克?

3)若白菜每千克售价2元,则出售这20筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1、2,已知四边形ABCD为正方形,在射线AC上有一动点P,作PEAD(或延长线)于E,作PFDC(或延长线)于F,作射线BP交EF于G.

(1)在图1中,设正方形ABCD的边长为2,四边形ABFE的面积为y,AP=x,求y关于x的函数表达式;

(2)结论:GBEF对图1,图2都是成立的,请任选一图形给出证明;

(3)请根据图2证明:FGC∽△PFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一方队正沿箭头所指的方向前进

1A的位置为第三列第四行,表示为(34),那么B的位置是____________

A B C D

2B左侧第二个人的位置是____________

A B C D

3)如果队伍向东前进,那么A北侧第二个人的位置是____________

A B C D

4表示的位置是____________

AA BB CC DD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD边长为3,连接ACAE平分CAD,交BC的延长线于点EFAAE,交CB延长线于点F,则EF的长为__________

查看答案和解析>>

同步练习册答案