精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC是边长为4的等边三角形,点DAB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°△BCE,则旋转过程中△BDE周长的最小值_____

【答案】2+4.

【解析】

由旋转的性质得到BE=AD,于是得到CDBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CDAB时,BDE的周长最小,于是得到结论.

∵将ACD绕点C逆时针方向旋转60°得到BCE,

∴∠DCE=60°,DC=EC,

∴△CDE是等边三角形,

由旋转的性质得,BE=AD,

CDBE=BE+DB+DE=AB+DE=4+DE,

∵△CDE是等边三角形,

DE=CD,

CDBE=CD+4,

由垂线段最短可知,当CDAB时,△BDE的周长最小,

此时,CD=2

∴△BDE的最小周长=CD+4=2+4,

故答案为:2+4.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】远远在一个不透明的盒子里装了4个除颜色外其他都相同的小球,其中有3个是红球,1个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线轴相交于两点(的左侧),与轴相交于点C03),且,抛物线的顶点为

1)求两点的坐标.

2)求抛物线的表达式.

3)过点作直线轴,交轴于点,点是抛物线上,两点间的一个动点(点不与两点重合),与直线分别相交于点当点运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,抛物线过点,顶点位于第一象限且在线段的垂直平分线上,若抛物线与线段无公共点,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+c的图象如图,对称轴是直线x=﹣1,有以下结论:①abc0;②4acb2;③2ab0;④ab+c0;⑤9a3b+c0.其中正确的结论有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线y12x2与双曲线y2交于AC两点,ABOAx轴于点B,且ABOA

1)求双曲线的解析式;

2)连接OC,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ADBC中,∠ACB=ADB=90°AD=BDAC=3BC=4,则线段CD的长等于__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC边相切于点C,与ABBC边分别交于点DECE的直径.

1)求证:AB的切线;

2)若AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系 xOy 中,直线 l x 轴交于点 A-20),与 y 轴交于点 B.双曲线与直线 l 交于 PQ 两点,其中点 P 的纵坐标大于点 Q 的纵坐标.

1)求点 B 的坐标;

2)当点 P 的横坐标为 2 时,求 k 的值;

3)连接 PO,记POB 的面积为 S,若 ,直接写出 k 的取值范围.

查看答案和解析>>

同步练习册答案