分析 在直角△ABC中,根据三角函数即可求得AC,进而由等边三角形的性质和正方形的性质及三角函数就可求得QR的长,在直角△QRP中运用三角函数即可得到RP、QP的长,解答即可.
解答 解:延长BA交QR于点M,连接AR,AP,
在△ABC与△GFC中,
$\left\{\begin{array}{l}{AC=GC}\\{∠ACB=∠GCF}\\{BC=FC}\end{array}\right.$,
∴△ABC≌△GFC(SAS),
∴∠CGF=∠BAC=30°,
∴∠HGQ=60°,
∵∠HAC=∠BAD=90°,
∴∠BAC+∠DAH=180°,
又∵AD∥QR,
∴∠RHA+∠DAH=180°,
∴∠RHA=∠BAC=30°,
∴∠QHG=60°,
∴∠Q=∠QHG=∠QGH=60°,
∴△QHG是等边三角形.
AC=AB•cos30°=4×$\frac{\sqrt{3}}{2}=2\sqrt{3}$,
则QH=HA=HG=AC=2$\sqrt{3}$,
在直角△HMA中,HM=AH•sin60°=2$\sqrt{3}$×$\frac{\sqrt{3}}{2}$=3.AM=HA•cos60°=$\sqrt{3}$,
在直角△AMR中,MR=AD=AB=4,
∴QR=2$\sqrt{3}$+3+4=7+2$\sqrt{3}$,
∴QP=2QR=14+4$\sqrt{3}$,
PR=QR•$\sqrt{3}$=7$\sqrt{3}$+6,
∴点P的坐标为(7$\sqrt{3}$+6,0).
故答案为:(7$\sqrt{3}$+6,0).
点评 此题考查勾股定理问题,正确运用三角函数以及勾股定理是解决本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com