【题目】如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.
【答案】(1)证明详见解析;(2)60°.
【解析】
试题分析:(1)根据等边三角形的性质可得,∠BAC=∠C=60°,AB=CA,然后利用“边角边”证明△ABE和△CAD全等;
(2)根据全等三角形对应角相等可得∠ABE=∠CAD,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理得到∠AFE=∠BAC.
试题解析:∵△ABC为等边三角形,
∴∠BAC=∠C=60°,AB=CA,
即∠BAE=∠C=60°,
在△ABE和△CAD中,
AB=CA,∠BAC=∠C,AE=CD,
∴△ABE≌△CAD(SAS);
(2)解:∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠AFE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
科目:初中数学 来源: 题型:
【题目】如图,直线OM⊥ON,垂足为O,三角板的直角顶点C落在∠MON的内部,三角板的另两条直角边分别与ON、OM交于点D和点B.
(1)填空:∠OBC+∠ODC= ;
(2)如图1:若DE平分∠ODC,BF平分∠CBM,求证:DE⊥BF:
(3)如图2:若BF、DG分别平分∠OBC、∠ODC的外角,判断BF与DG的位置关系,并说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC,其中正确结论的个数是( ).
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面关于有理数的说法正确的是
A. 整数和分数统称为有理数
B. 正整数集合与负整数集合合在一起就构成整数集合
C. 有限小数和无限循环小数不是有理数
D. 正数、负数和零统称为有理数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com