分析 (1)三角形的中位线平行于第三边,且等于第三边的一半.需注意新四边形的形状只与对角线有关,不用考虑原四边形的形状;
(2)利用三角形中位线定理可得新四边形的对边平行且等于原四边形一条对角线的一半,那么根据一组对边平行且相等的四边形是平行四边形可判定所得的四边形一定是平行四边形;
(3)利用(1)的判定方法,再根据矩形,菱形,正方形的判定方法来判定.
解答
解:(1)任意四边形的中点四边形是平行四边形;
理由:如图1,连接BD,
已知任意四边形ABCD,E、F、G、H分别是各边中点.
在△ABD中,E、H是AB、AD中点,所以EH∥BD,EH=$\frac{1}{2}$BD.
在△BCD中,G、F是DC、BC中点,
所以GF∥BD,GF=$\frac{1}{2}$BD,
所以EH=GF,EH∥GF,
所以四边形EFGH为平行四边形.
(2)任意平行四边形的中点四边形是平行四边形,
理由:如图2,四边形ABCD,E、N、M、F分别是DA,AB,BC,DC中点,连接AC,DE,![]()
根据三角形中位线定理可得:
EF平行且等于AC的一半,MN平行且等于AC的一半,
根据平行四边形的判定,可知四边形为平行四边形;
(3)如果原四边形为矩形,则形成的中点四边形为菱形;
如果原四边形为菱形,则形成的中点四边形为矩形;
如果原四边形为正方形,则形成的中点四边形为正方形.
证明:原四边形为矩形,则其对角线长度相等,再根据(1)的证明可知,中点四边形为平行四边形,
所以此平行四边形的四条边相等,可以证明中点四边形为菱形;
原四边形为菱形,则其对角线互相垂直,再根据(1)的证明可知,中点四边形为平行四边形,
所以此平行四边形的邻边垂直,可以证明中点四边形为矩形;
原四边形为正方形,则其对角线互相垂直,且对角线长度相等,再根据(1)的证明可知,中点四边形为平行四边形,
所以中点平行四边形的四条边相等且对边垂直,可以证明中点四边形为正方形.
点评 此题考查了三角形的中位线定理和特殊四边形的判定定理.熟记结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线相等的四边形各边中点所得四边形是菱形;顺次连接对角线垂直的四边形各边中点所得四边形是矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得四边形是正方形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com