【题目】如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BF⊥AD,AD的延长线交BF于E,且E为垂足,则结论①AD=BF,②CF=CD,③AC+CD=AB,④BE=CF,⑤BF=2BE,其中正确的结论的个数是( )
A.4 B.3 C.2 D.1
【答案】A.
【解析】
试题分析:①∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,∵BC=AC,∠EAF=∠FBC,∠BCF=∠AEF,∴Rt△ADC≌Rt△BFC,∴AD=BF;
故①正确;
②∵①中Rt△ADC≌Rt△BFC,∴CF=CD,故②正确;
③∵①中Rt△ADC≌Rt△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故③正确;
④由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;
⑤由③可知,△ABF是等腰三角形,∵BE⊥AD,∴BF=2BE,故⑤正确.
所以①②③⑤四项正确.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=12cm,BC=9cm,点D为AB的中点.
(1)如果点P在线段BC上以3厘米/秒的速度由B向C点运动,同时点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,当经过1秒时,△BPD与△CQP是否全等,请判断并说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD≌△CPQ?
(2)若点Q以②的运动速度从点C出发,点P以原来运动速度从点B同时出发,都逆时针沿△ABC的三边运动,求经过多长时间,点P与点Q第一次在△ABC的哪条边上会相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们用f(x)表示不大于x的最大整数,例如:f(2.3)=2,f(4)=4,f(﹣1.5)=﹣2;用g(y)表示不小于y的最小整数.例如:g(2.5)=3,g(5)=5,g(﹣3.5)=﹣3.解决下列问题:
(1)根据以上运算规律:f(﹣5.4)=______,g(4.5)=______.
(2)若f(x)=3,则x的取值范围是_______;若g(y)=﹣2,则y的取值范围是______.
(3)已知x,y满足,求x,y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为( )
A.5B.6C.8D.10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小方格都是边长为1个单位的正方形,已知△ABC的三个顶点在格点上.
(1)画出△A1B1C1,使它与△ABC关于直线a对称;
(2)求出△A1B1C1的面积;
(3)在直线a上画出点P,使PA+PC最小,最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格图中的每小格均是边长是1的正方形,与的顶点均在格点上,请完成下列各题:
(1)在平面直角坐标系中画出与关于x轴对称的,并写出将沿着x轴向右平移几个单位后得到;
(2)在x轴上求作一点P,使得的值最大。(要求:保留画图痕迹并直接写出点P的坐标.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列解题过程:
===-2;
==.
请回答下列问题:
(1)观察上面的解题过程,请直接写出式子= ;
(2)观察上面的解题过程,请直接写出式子= ;
(3)利用上面所提供的解法,请求+···+的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.
(1)求抛物线y2的解析式;
(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;
(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com