精英家教网 > 初中数学 > 题目详情

【题目】阅读下列材料,并完成任务. 三角形的外心定义:三角形三边的垂直平分线相交于一点,这个点叫做三角形的外心,如图1,直线分别是边的垂直平分线.

求证:直线相交于一点.

证明:如图2,设相交于点,分别连接

的垂直平分线,

,(依据1

的垂直平分线,

,(依据2

的垂直平分线,

∴点上,(依据3

∴直线相交于一点.

1)上述证明过程中的依据1”“依据2”“依据3”分别指什么?

2)如图3,直线分别是的垂直平分线,直线相交于点,点 的外心,于点于点,分别连接. 的周长为,求的周长.

【答案】1)依据1:线段垂直平分线上的点与这条线段两个端点的距离相等;依据2:等量代换;依据3:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;(2

【解析】

1)根据推理过程和垂直平分线的性质和判定得出答案

2)根据垂直平分线的性质得出的周长=BC,再根据的周长即可得出答案

1)依据1:线段垂直平分线上的点与这条线段两个端点的距离相等

依据2:等量代换

依据3:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上

2)解:直线的的垂直平分线

直线的的垂直平分线

的周长

的周长为

的周长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.

(1)求抛物线C1的表达式;

(2)直接用含t的代数式表示线段MN的长;

(3)当AMN是以MN为直角边的等腰直角三角形时,求t的值;

(4)在(3)的条件下,设抛物线C1y轴交于点P,点My轴右侧的抛物线C2上,连接AMy轴于点k,连接KN,在平面内有一点Q,连接KQQN,当KQ=1且∠KNQ=BNP时,请直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,图形ABCD是由两个二次函数y1=kx2+mk<0)与y2=ax2+ba>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).

(1)直接写出这两个二次函数的表达式;

(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;

(3)如图2,连接BCCDAD在坐标平面内,求使得BDCADE相似(其中点C与点E是对应顶点)的点E的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,△ABC△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点PAD的中点,连接AE,BD,PM,PN,MN.

(1)观察猜想:

1中,PMPN的数量关系是   ,位置关系是   

(2)探究证明:

将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AEMP、BD分别交于点G、H,判断△PMN的形状,并说明理由;

(3)拓展延伸:

△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,则________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BAx轴,AC是射线.

(1)当x30,求y与x之间的函数关系式;

(2)若小李4月份上网20小时,他应付多少元的上网费用?

(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.

1)该商家购进的第一批衬衫是多少件?

2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别是双曲线在第一、三象限上的点,轴,轴,垂足分别为,点轴的交点.设的面积为的面积为的面积为,则有(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1-2的度数是(

A. 32° B. 64° C. 65° D. 70°

查看答案和解析>>

同步练习册答案