试题分析:(1)①根据矩形的性质和已知条件得出∠HAE=45°,再根据HA=HG,得出∠HAE=∠HGA,从而得出答案解决:
∵四边形ABCD是矩形,∴∠ADH=90°.
∵DH=DA,∴∠DAH=∠DHA=45°.∴∠HAE=45°.
∵HA=HG,∴∠HAE=∠HGA=45°
②分∠AHE为锐角和钝角两种情况讨论即可.
(2)过点H作HQ⊥AB于Q,根据矩形的性质得出∠D=∠DAQ=∠AQH=90°,得出四边形DAQH为矩形,设AD=x,GB=y,则HQ=x,EG=2y,由折叠的性质可知∠AEH=∠FEH=60°,得出∠FEG=60°,在Rt△EFG中,根据特殊角的三角函数值求出EG和EQ的值,再由折叠的性质得出AE=EF,求出y关于x的表达式,从而求出AB=2AQ+GB,即可根据比值消去参数x得出a的值.
试题解析:解:(1)①45.
②分两种情况讨论:
第一种情况:如答图1,∠AHE为锐角时,
∵∠HAG=∠HGA=45°,∴∠AHG=90°.
由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,
∵EF∥HG,∴∠FHG=∠F=45°.
∴∠AHF=∠AHG
∠FHG=45°,即∠AHE+∠FHE=45°.
∴∠AHE=22.5°.
此时,当B与G重合时,a的值最小,最小值是2.
第二种情况:如答图2,∠AHE为钝角时,
∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°.
由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=22.5°.
∵EF∥HG,∴∠GHE=∠FEH=22.5°.
∴∠AHE=90°+22.5°=112.5°.
此时,当B与E重合时,a的值最小,
设DH=DA=x,则AH=CH=
x,
在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=
AH=2x,
∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE.∴GH=GE=
x.
∴AB=AE=2x+
x.
∴a的最小值是
.
综上所述,当∠AHE为锐角时,∠AHE=22.5°时,a的最小值是2;当∠AHE为钝角时,∠AHE=112.5°时,a的最小值是
.
(2)如答图3:过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,
在矩形ABCD中,∠D=∠DAQ=90°,
∴∠D=∠DAQ=∠AQH=90°.
∴四边形DAQH为矩形.∴AD=HQ.
设AD=x,GB=y,则HQ=x,EG=2y,
由折叠可知:∠AEH=∠FEH=60°,∴∠FEG=60°.
在Rt△EFG中,EG=EF×cos60°=4y×
,
在Rt△HQE中,
,
∴
.
∵HA=HG,HQ⊥AB,∴AQ=GQ=
.
∴AE=AQ+QE=
.
由折叠可知:AE=EF,即
,即
.
∴AB=2AQ+GB=
.
∴
.