【题目】如图1,在直角坐标系中,一次函数的图象与轴交于点,与一次函数的图象交于点.
(1)求的值及的表达式;
(2)直线与轴交于点,直线与轴交于点,求四边形的面积;
(3)如图2,已知矩形,,,,矩形随边在轴上平移而移动,若矩形与直线或有交点,直接写出的取值范围.
【答案】(1); ; (2);(3)或
【解析】
(1)根据点E在一次函数图象上,求出m的值,利用待定系数法即可求出直线l1的函数解析式;
(2)由(1)求出点B、C的坐标,利用S四边形OBEC=S△OBE+S△OCE即可得解;
(3)分别求出矩形MNPQ在平移过程中,当点Q在l1上、点N在l1上、点Q在l2上、点N在l2上时a的值,即可得解.
解:(1)∵点在一次函数图像上,
∴,∴
设直线的表达式为
∵直线过点和
∴
解得,
∴直线的表达式为
(2)由(1)可知,点坐标为,点坐标为
∴
(3)或,
当矩形MNPQ的顶点Q在l1上时,a的值为,
矩形MNPQ向右平移,当点N在l1上时,
,解得,即点,
∴a的值为,
矩形MNPQ继续向右平移,当点Q在l2上时,a的值为3,
矩形MNPQ继续向右平移,当点N在l2上时,
x-3=1,解得x=4,即点N(4,1),
∴a的值4+2=6,
综上所述,当或3≤a≤6时,矩形MNPQ与直线l1或l2有交点.
科目:初中数学 来源: 题型:
【题目】如图,先有一张矩形纸片点分别在矩形的边上,将矩形纸片沿直线MN折叠,使点落在矩形的边上,记为点,点落在处,连接,交于点,连接.下列结论:
②四边形是菱形;
③重合时,;
④的面积的取值范围是
其中正确的是_____(把正确结论的序号都填上).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线和直线都经过点,点为坐标原点,点为抛物线上的动点,直线与轴、轴分别交于两点.
(1)求的值;
(2)当是以为底边的等腰三角形时,求点的坐标;
(3)满足(2)的条件时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止.甲、乙两车相距的路程(千米)与甲车的行驶时间(时)之间的函数关系如图所示.
(1)乙车的速度为 千米/时, , .
(2)求甲、乙两车相遇后与之间的函数关系式.
(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:AB是⊙O的直径,AC交⊙O于G,E是AG上一点,D为△BCE内心,BE交AD于F,且∠DBE=∠BAD.
(1)求证:BC是⊙O的切线;
(2)求证:DF=DG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC=90°,且BC=6,AB=3,AD是∠BAC的平分线,与BC相交于点E,点G是BC上一点,E为线段BG的中点,DG⊥BC于点G,交AC于点F,则FG的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形△ABC中,AC=6,∠C=90°,∠DCE=45°,AD=3,则BE的长为_____________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形的边交轴于点,轴,反比例函数的图象经过点,点的坐标为,.
(1)求反比例函数的解析式;
(2)点为轴上一动点,当的值最小时,求出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com