【题目】如图,在等腰直角三角形△ABC中,AC=6,∠C=90°,∠DCE=45°,AD=3,则BE的长为_____________________
【答案】4
【解析】
将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,由旋转的性质可得AF=BE,CF=EC,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,即可证△FCD≌△ECD,可得DE=DF,根据勾股定理可求BE的长度.
如图,将△BCE绕点C逆时针旋转90°得到△ACF,连接DF,
∵∠ACB=90°,AC=BC=6,
∴AB=12,∠CAB=∠ABC=45°,
∵AD=3,
∴BD=9=DE+BE,
∵将△BCE绕点C逆时针旋转90°得到△ACF
∴△AFC≌△BEC
∴AF=BE,CF=CE,∠FAC=∠ABC=45°=∠CAB,∠ACF=∠BCE,
∴∠FAD=90°
∵∠DCE=45°,∠ACB=90°,
∴∠ACD+∠BCE=45°,
∴∠ACD+∠FCA=45°=∠DCE,且CF=BC,CD=CD,
∴△FCD≌△ECD(SAS)
∴DE=DF,
在Rt△ADF中,DF=AD+AF,
∴(9-BE) =9+BE,
∴BE=4
故答案为:4
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O是△ABC的外接圆,且BC为⊙O的直径,在劣弧上取一点D,使,将△ADC沿AD对折,得到△ADE,连接CE.
(1)求证:CE是⊙O的切线;
(2)若CEC D,劣弧的弧长为π,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在直角坐标系中,一次函数的图象与轴交于点,与一次函数的图象交于点.
(1)求的值及的表达式;
(2)直线与轴交于点,直线与轴交于点,求四边形的面积;
(3)如图2,已知矩形,,,,矩形随边在轴上平移而移动,若矩形与直线或有交点,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.某商场销售一种品牌的小米,进价是40元/袋.市场调查后发现,售价是60元/袋时,平均每星期的销售量是300袋,而销售单价每降低1元,平均每星期就可多售出30袋.
(1)若每袋小米降价x元,写出该商场销售该品牌小米每星期获得的利润w(元)与x(元)之间的函数关系式.
(2)在(1)的条件下,每袋小米的销售单价是多少元时,该商场每星期销售这种品牌小米获得的利润最大?最大利润是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠DBE=α,
(1)如图1,若C点在射线AB上,且∠C=α,求证:;
(2)如图2,若C在射线AB上,α=60°,∠ABD=75°,EC∥AD,EC=2AB=4,求S四边形BCED;
(3)如图3,若α=90°,BD平分∠ADE,EF⊥AD于F,线段BF、DE交于G,若,直接写出的值(用含m,n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴相交于两点(点在点的左侧),与轴相交于点.为抛物线上一点,横坐标为,且.
⑴求此抛物线的解析式;
⑵当点位于轴下方时,求面积的最大值;
⑶设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.
①求关于的函数解析式,并写出自变量的取值范围;
②当时,直接写出的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校开展了为期一周的“新时代文明实践”活动,为了解情况,学生会随机调查了部分学生在这次活动中“宣传文明礼仪”的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B;1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).
请根据图中提供的信息,解答下列问题:
(1)学生会随机调查了 名学生.
(2)补全频数分布直方图.
(3)若全校有900名学生,估计该校在这次活动中“宣传文明礼仪”的时间不少于2小时的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线L:经过点A(-3,0)和点B(0,-6),L关于原点O对称的抛物线为.
(1)求抛物线L的表达式;
(2)点P在抛物线上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若△POD与△AOB相似,求符合条件的点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com