【题目】嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.
(1)这组成绩的众数是 ;
(2)求这组成绩的方差;
(3)若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=x2+bx+c的对称轴为x=1,且其顶点在直线y=﹣2x﹣2上.
(1)求抛物线的顶点坐标;
(2)求抛物线的解析式;
(3)在给定的平面直角坐标系中画出这个二次函数的图象;
(4)当﹣1<x<4时,直接写出y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,连接BD,AE⊥BD于点E.
(1)记△ABC得外接圆为⊙0,
①请用文字描述圆心0的位置;
②求证:点E一定在⊙0上.
(2)将射线AE绕点A顺时针旋转45°后,所得到的射线与BD延长线交于点F,连接CF,CE.
①依题意补全图形;
②用等式表示线段AF,CE,BE的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x(x﹣b)﹣与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P.
(1)若点B与点C关于直线x=1对称,求b的值;
(2)若OB=OA,求△BCP的面积;
(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大值或最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系中,抛物线y=﹣(x﹣3a)(x+a)交x轴分别于点A、B(点B在x轴负半轴,OA>OB),交y轴于点C,OC=4OB,连接AC,点P从点A出发向点O运动,点Q从点A出发向点C运动.
(1)求a的值;
(2)点P、Q都以每秒1个单位的速度运动,运动t秒时,点A关于直线PQ对称的点E恰好在抛物线上,求t的值;
(3)点P以每秒1个单位的速度运动,点Q以每秒个单位的速度运动,直线PQ交抛物线于点M,当△CMA的内心在直线PQ上时,求点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AG是∠PAQ的平分线,点E在AQ上,以AE为直径的⊙0交AG于点D,过点D作AP的垂线,垂足为点C,交AQ于点B.
(1)求证:直线BC是⊙O的切线;
(2)若⊙O的半径为6,AC=2CD,求BD的长
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com