精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,抛物线yxxb)﹣y轴相交于A点,与x轴相交于BC两点,且点C在点B的右侧,设抛物线的顶点为P

1)若点B与点C关于直线x1对称,求b的值;

2)若OBOA,求△BCP的面积;

3)当﹣1x1时,该抛物线上最高点与最低点纵坐标的差为h,求出hb的关系;若h有最大值或最小值,直接写出这个最大值或最小值.

【答案】(1)2(2)(3)h存在最小值,最小值为1

【解析】

1)由点B与点C关于直线x1对称,可得出抛物线的对称轴为直线x1,再利用二次函数的性质可求出b值;

2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OAOB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出BCP的面积;

3)分b≥20≤b2,﹣2b0b≤2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论.

解:(1)∵点B与点C关于直线x1对称,yxxb)﹣x2bx

∴﹣1

解得:b2

2)当x0时,yx2bx=﹣

∴点A的坐标为(0,﹣).

又∵OBOA

∴点B的坐标为(﹣0).

B(﹣0)代入yx2bx,得:0+b

解得:b

∴抛物线的解析式为yx2x

yx2x=(x2

∴点P的坐标为(,﹣).

y0时,x2x0

解得:x1=﹣x21

∴点C的坐标为(10).

SBCP×[1﹣(﹣]×||

3yx2bx=(x2

≥1,即b≥2时,如图1所示,

y最大b+y最小=﹣b+

h2b

0≤1,即0≤b2时,如图2所示,

y最大b+y最小=﹣

h1+b+=(1+2

当﹣10,﹣2b0时,如图3所示

y最大by最小=﹣

h1b+=(12

1,即b≤2时,如图4所示,

y最大=﹣b+y最小b+

h=﹣2b

综上所述:hh存在最小值,最小值为1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,是射线上一点,连接,沿将三角形折叠,得三角形

1)当时,=_______度;

2)如图,当时,求线段的长度;

3)当点落在平行四边形的边上时,直接写出线段的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正三角形OAB的顶点B的坐标为(2,0),点A在第一象限内,将△OAB沿直线OA的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为(  )

A. 42 B. 33 C. 43 D. 32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“五一”期间甲乙两商场搞促销活动,甲商场的方案是:在一个不透明的箱子里放4个完全相同的小球,球上分别标“0元”“20元”“30元”“50元”,顾客每消费满300元就可从箱子里不放回地摸出2个球,根据两个小球所标金额之和可获相应价格的礼品;乙商场的方案是:在一个不透明的箱子里放2个完全相同的小球,球上分别标“5元”“30元”,顾客每消费满100元,就可从箱子里有放回地摸出1个球,根据小球所标金额可获相应价格的礼品.某顾客准备消费300.

(1)请用画树状图或列表法,求出该顾客在甲商场获得礼品的总价值不低于50元的概率;

(2)判断该顾客去哪个商场消费使获得礼品的总价值不低于50元机会更大?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:

魔术师能立刻说出观众想的那个数.

1)如果小玲想的数是,请你通过计算帮助她告诉魔术师的结果;

2)如果小明想了一个数计算后,告诉魔术师结果为85,那么魔术师立刻说出小明想的那个数是:__________

3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家为了推进教育均衡发展,在乡镇中心学校开设的体育选修课有A﹣篮球,B﹣足球,C﹣排球,D﹣羽毛球,E﹣乒乓球,学生可根据自己的爱好选修一门,学校张老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图):

1)求出该班的总人数,并补全条形统计图;

2)求出“足球”在扇形统计图中的圆心角是多少度;

3)若该班所在的年级共有1200人,请估计选篮球的学生有多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边AB=20,面积为320,BAD<90°,O与边AB,AD都相切,AO=10,则O的半径长等于(

A.5 B.6 C.2 D.3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】十一期间,老张在某商场购物后,参加了出口处的抽奖活动.抽奖规则如下:每张发票可摸球一次,每次从装有大小形状都相同的1个白球和2个红球的盒子中,随机摸出一个球,若摸出的是白球,则获得一份奖品;若摸出的是红球,则不获奖.

1)求每次摸球中奖的概率;

2)老张想我手中有两张发票,那么中奖的概率就翻了一倍.”你认为老张的想法正确吗?用列表法或画树形图分析说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABAC,∠BAC100°,在同一平面内,将ABC绕点A顺时针旋转到AB1C1的位置,连接BB1,若BB1AC1,则∠CAC1的度数是(  )

A.10°B.20°C.30°D.40°

查看答案和解析>>

同步练习册答案