【题目】如图,矩形中,,,E是边的中点,点P在边上,设,若以点D为圆心,为半径的与线段只有一个公共点,则所有满足条件的x的取值范围是______.
【答案】x=或
【解析】
根据题意,当与AE相切时,由相似三角形的性质,可得:,从而求出x的值,当过点E时,x=PD=DE,当过点A时,x=PD=AD,进而求出x满足的条件.
如图1,当与AE相切时,设切点为G,连接DG,
∵,
∴DG=DP=x,
∵∠DAG=∠AEB,∠AGD=∠B=90°,
∴AGD~EBA,
∴,
∴,解得:x=,
如图2,当过点E时,与线段AE有两个公共点,连接DE,此时,PD=DE=5,
∴x=PD=5
如图3,当过点A时,与线段AE有1个公共点,此时,PD=AD=6,
∴x=PD=6,
综上所述:当与线段AE只有一个公共点时,x满足的条件是:x=或;
故答案是:x=或.
图1 图2
图3
科目:初中数学 来源: 题型:
【题目】某民俗旅游村为接待游客住宿需要,开设了有100张床位的旅馆.当每张床位每天收费100元时,床位可全部租出.若每张床位每天收费提高20元,则相应地减少了10张床位租出.如果每张床位每天以20元为单位提高收费,为使租出的床位少且租金高,那么每张床位每天最合适的收费是( )
A. 140元 B. 150元 C. 160元 D. 180元
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)用画树状图法或列表法分析这两辆汽车行驶方向所有可能的结果;
(2)求一辆车向右转,一辆车向左转的概率;
(3)求至少有一辆车直行的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D、E分别是AB、AC的中点,若△ABC的面积为S△ABC=36cm2,则梯形EDBC的面积SEDBC为( )
A.9B.18C.27D.30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)直线l1:y=x+1与x轴交于点A,直线l2:y=﹣x+3与x轴交于点B,l1与l2交于点C,直线l3过线段AB的中点和点C,求直线l3的解析式;
(2)已知平面直角坐标系中,直线l经过点P(2,1)且与双曲线y=交于A、B不同两点,问是否存在这样的直线l,使得点P恰好为线段AB的中点,若存在,求出直线l的解析式,若不存在,请说明理由;
(3)若A(x1,y1)、B(x2,y2)是抛物线y=4x2上的不同两点(y1≠y2),线段AB的垂直平分线与y轴交于点P,与线段AB交于点M(xm,ym),则称线段AB为点P的一条“相关弦”,若点P的坐标为(0,a)时(a为常数),证明点P的“相关弦”中点M的纵坐标相同.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是半圆弧上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
①经测量m的值是(保留一位小数).
②在AP,PC,AC的长度这三个量中,确定 的长度是自变量, 的长度和的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.
组别 | 时间(小时) | 频数(人数) | 频率 |
A | 0≤t≤0.5 | 6 | 0.15 |
B | 0.5≤t≤1 | a | 0.3 |
C | 1≤t≤1.5 | 10 | 0.25 |
D | 1.5≤t≤2 | 8 | b |
E | 2≤t≤2.5 | 4 | 0.1 |
合计 | 1 |
请根据图表中的信息,解答下列问题:
(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;
(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?
(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+n(m≠0)的图象与反比例函数y(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为点M,BM=OM=2,点A的纵坐标为4.
(1)求该反比例函数和一次函数的表达式;
(2)根据图象直接写出当mx+n时,x的取值范围;
(3)直线AB交x轴于点D,过点D作直线l⊥x轴,如果直线l上存在点P,坐标平面内存在点Q,使以O、P、A、Q为顶点的四边形是矩形,直接写出点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com