精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,∠C=90°,AE平分∠BACBCE,点OAB上,以OA为半径的圆,交ABD,交ACC,且点E在⊙O上,连接DE,BF切⊙O于点F.

(1)求证:BE=BF;

(2)若⊙O的半径为R,AG=R+1,CE=R﹣1,求弦AG的长.

【答案】(1)证明见解析;(2)AG=6.

【解析】

(1)连接OE,证出OE⊥CD,再由切线长定理易得BE=BF;
(2)根据直径所对的圆周角得出∠AGD=90°,从而证得GD∥BC,进而证得OE⊥GD,根据垂径定理得出GH=DH,然后证得四边形GCEH是矩形,从而证得GD=2(R-1)=2R-2,最后根据勾股定理求得R,即可求得AG的长.

(1)连接DG、OE,交于点H.

AE平分∠BACBCE,

∴∠CAE=DAE,

OA=OE,

∴∠OAE=OEA,

∴∠CAE=OEA,

ACOE,

∴∠OEB=C=90°,

OEBC,

BC是圆的切线,

BE=BF;

(2)AB是直径,

∵∠AGD=90°,

∵∠C=90°,

GDBC,

OEBC,

OEGD,

GH=DH,

∵∠AGD=90°,C=90°,OEBC,

∴四边形GCEH是矩形,

GH=CE=R﹣1,

GD=2(R﹣1)=2R﹣2,

在直角三角形AGD中,AG2+GD2=AD2

即(R+1)2+(2R﹣2)2=(2R)2

解得R1=5,R2=1(舍去),

AG=R+1=5+1=6;

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y()与房价x()(180≤x≤300)满足一次函数关系,部分对应值如下表:

x()

180

260

280

300

y()

100

60

50

40

(1)yx之间的函数表达式;

(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径是4,点A,B,C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某型号新能源纯电动汽车充满电后,蓄电池剩余电量(千瓦时)关于已行驶路程 (千米)的函数图象.

1)根据图象,直接写出蓄电池剩余电量为35千瓦时时汽车已行驶的路程,当时,求1千瓦时的电量汽车能行驶的路程;

2)当时求关于的函数表达式,并计算当汽车已行驶180千米时,蓄电池的剩余电量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一边长为4正方形放在平面直角坐标系中,其中为原点,点分别在轴、轴上,为射线上任意一点

1)如图1,若点坐标为,连接于点,则的面积为__________

2)如图2,将沿翻折得,若点在直线图象上,求出点坐标;

3)如图3,将沿翻折得和射线交于点,连接,若,平面内是否存在点,使得是以为直角边的等腰直角三角形,若存在,请求出所有点坐标:若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,BC是⊙O的弦,半径ODBC,垂足为E,若BC=,OE=3;

求:(1)O的半径;

(2)阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

1)若此方程的一个根为1,求的值;

2)求证:不论取何实数,此方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,点在线段上运动(点不与重合),连接,作交线段

1)当时,

2)当等于多少度时,?请说明理由;

3能成为等腰三角形吗?若能,请直接写出的度数;若不能,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,左右两幅图案关于y轴对称,右图案中的左右眼睛的坐标分别是(23)(43),嘴角左右端点的坐标分别是(21)(41)

(1)试确定左图案中的左右眼睛和嘴角左右端点的坐标;

(2)从对称的角度来考虑,说一说你是怎样得到的;

(3)直接写出右图案中的嘴角左右端点关于原点的对称点的坐标.

查看答案和解析>>

同步练习册答案