【题目】如图,已知正方形的边长为,点是边上-动点,连接,将绕点顺时针旋转到,连接,则的最小值是( )
A.B.C.D.
【答案】A
【解析】
连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明△AED≌△GFE(AAS),确定F点在BF的射线上运动;作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上;当D、F、C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=即可.
解:连接BF,过点F作FG⊥AB交AB延长线于点G,
∵将ED绕点E顺时针旋转90°到EF,
∴EF⊥DE,且EF=DE,
∴△AED≌△GFE(AAS),
∴FG=AE,
∴F点在BF的射线上运动,
作点C关于BF的对称点C',
∵EG=DA,FG=AE,
∴AE=BG,
∴BG=FG,
∴∠FBG=45°,
∴∠CBF=45°,
∴C'点在AB的延长线上,
当D、F、C'三点共线时,DF+CF=DC'最小,
在Rt△ADC'中,AD=3,AC'=6,
∴DC'=,
∴DF+CF的最小值为,
故选:A.
科目:初中数学 来源: 题型:
【题目】如图,在中,,,,以点为圆心,以为半径作优弧,交于点,交于点.点在优弧上从点开始移动,到达点时停止,连接.
(1)当时,判断与优弧的位置关系,并加以证明;
(2)当时,求点在优弧上移动的路线长及线段的长.
(3)连接,设的面积为,直接写出的取值范围.
备用图
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABDC是⊙O的内接四边形,∠BDC=120°,AB=AC,连接对角线AD,BC,点F在线段BD的延长线上,且CF=DF,⊙O的切线CE交BF于点E.
(1)求证:CE∥AB;
(2)求证:AD=BD+CD.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,直线交坐标轴于点、点且面积为
如图1,求的值;
如图2,点在轴的负半轴上,在线段上,连,作交线段于, 若点纵坐标为长度为,求与的函数关系式(不写自变量取值范围);
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系内,抛物线与线段有两个不同的交点,其中点,点.有下列结论:
①直线的解析式为;②方程有两个不相等的实数根;③a的取值范围是或.
其中,正确结论的个数为( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图, 在中,,, 点为中点, 点在边上, 连接,过点作
上交于点,连接。下列结论:
(1)(2)(3)(4)
其中正确的是__________(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解朝阳社区岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:
(1)求参与问卷调查的总人数.
(2)补全条形统计图.
(3)该社区中岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com