【题目】如图,在等腰△ABC中,AC=BC=3,AB=6,点E从点B沿着射线BA以每秒3个单位的速度运动,过点E作BC的平行线交∠ACB的外角平分线CF于点F.
(1)求证:四边形BCFE是平行四边形;
(2)当点E是边AB的中点时,连结AF,试判断四边形AECF的形状,并说明理由;
(3)设运动时间为t秒,是否存在t的值,使得以△EFC的其中两边为边所构造的平行四边形恰好是菱形?若存在,请求出t的值;若不存在,试说明理由.
【答案】(1)证明见解析;(2)四边形AECF是矩形,理由见解析;(3)t的值为秒或秒或2秒
【解析】
(1)由等腰三角形的性质得:∠B=∠BAC,再由角平分线定义和三角形外角的性质可解答;
(2)由有一个角是直角的平行四边形是矩形可解答;
(3)分三种情况:①EF=CF;②CE=CF;②CE=EF;分别列方程可解答.
证明:(1)如图1,
∵AC=BC,
∴∠B=∠BAC,
∵CF平分∠ACH,
∴∠ACF=∠FCH,
∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,
∴∠FCH=∠B,
∴BE∥CF,
∵EF∥BC,
∴四边形BCFE是平行四边形;
(2)四边形AECF是矩形,
理由是:
∵E是AB的中点,AC=BC,
∴CE⊥AB,
∴∠AEC=90°,
由(1)知:四边形BCFE是平行四边形,
∴CF=BE=AE,
∵AE∥CF,AE=CF,
∴四边形AECF是平行四边形,且∠AEC=90°,
∴四边形AECF是矩形;
(3)①以EF和CF两边为邻边所构造的平行四边形恰好是菱形时,如图2,
∴BE=BC,即3t=3,
∴t=;
②以CE和CF两边为邻边所构造的平行四边形恰好是菱形时,如图3,过C作CD⊥AB于D,连接GC,
∵AC=BC=3,AB=6,
∴BD=AD=3,
由勾股定理得:CD===6,
∵四边形CEGF是菱形,
∴EF⊥GC,且EF∥BC,
∴GC⊥BC,且∠EGC=∠ECG,
∴∠EBC=∠ECB,
∴BE=CE=3t,
∵(3t)2=62+(3t﹣3)2,
∴t=;
③以CE和EF两边为邻边所构造的平行四边形恰好是菱形时,如图4,CA=AF=BC,此时E与A重合,
∴t=2,
综上所述,t的值为秒或秒或2秒;
科目:初中数学 来源: 题型:
【题目】人民商场销售某种商品,统计发现:每件盈利元时,平均每天可销售件.经调查发现,该商品每降价元,商场平均每天可多售出件.
假如现在库存量太大,部门经理想尽快减少库存,又想销售该商品日盈利达到元,请你帮忙思考,该降价多少?
假如部门经理想销售该商品的日盈利达到最大,请你帮忙思考,又该如何降价?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=x+4.如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B.C两点,顶点D在正方形内部.
(1)写出点M(2,3)任意两条特征线___________________
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为P(1,4),抛物线与y轴交于点C(0,3),与x轴交于A、B两点.
(1)求此抛物线的解析式;
(2)求四边形OBPC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某单位使用共享单车的情况,该单位有200名员工,某研究小组随机采访10位员工,得到这10位员工一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.
(1)这组数据的中位数是 ,众数是
(2)试用平均数估计该单位员工一周内使用共享单车的总次数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题:
(1)n =________,小明调查了_____户居民,并补全图1;
(2)每月每户用水量的中位数落在______之间,众数落在_______之间;
(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y1=a(x+2)2+m过原点,与抛物线y2=(x﹣3)2+n交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.下列结论:①两条抛物线的对称轴距离为5;②x=0时,y2=5;③当x>3时,y1﹣y2>0;④y轴是线段BC的中垂线.正确结论是________(填写正确结论的序号).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com