精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.

(1)求A、B两点的坐标;

(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;

(3)当△BDM为直角三角形时,求m的值.

【答案】(1) A(﹣1,0),B(3,0);(2)存在,P();(3) m=﹣1或﹣.

【解析】试题分析:(1)将化为交点式,即可得到两点的坐标;
(2)先用待定系数法得到抛物线C1的解析式,过点PPQy轴,交BCQ,用待定系数法得到直线BC的解析式,再根据三角形的面积公式和配方法得到面积的最大值;
(3)先表示出再分两种情况:①时;

时,讨论即可求得的值.

试题解析:(1)

m≠0,

∴当y=0,

A(1,0),B(3,0);

(2),将A. B.C三点的坐标代入得:

解得

如图:过点PPQy轴,交BCQ

B.C的坐标可得直线BC的解析式为:

,有最大值,

(3)

顶点M坐标(1,4m),

x=0时,y=3m

D(0,3m),B(3,0),

BDMRt时有:

时有:

解得m=1(m<0,m=1舍去);

时有:

解得 (舍去).

综上,m=1时,为直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A-20),C22),过CCBx轴于B

1)如图1ABC的面积是

2)如图1,在y轴上找一点P,使得ABP的面积与ABC的面积相等,请直接写出P点坐标:

3)如图2,若过BBDACy轴于D,则∠BAC+ODB的度数为 度;

4)如图3BDAC,若AEDE分别平分∠CAB,∠ODB,求∠AED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),四边形ABCD中,ABCD,∠ADC=90°PA点出发,以每秒1个单位长度的速度,按A→B→C→D的顺序在边上匀速运动,设P点的运动时间为t秒,△PAD的面积为SS关于t的函数图象如图(2)所示,当P运动到BC中点时,△PAD的面积为( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在7×7网格中,每个小正方形的边长都为1

(1)建立适当的平面直角坐标系后,若点A(13)C(21),则点B的坐标为______

(2)ABC的面积为______

(3)判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=(  )

A. 76° B. 78° C. 80° D. 82°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图表示购买某种商品的个数与付款数之间的关系

1)根据图形完成下列表格

购买商品个数(个)

2

4

6

7

付款数(元)

   

   

   

   

2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(PG不与正方形顶点重合,且在CD的同侧),PD=PGDFPG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF

1)如图1,当点P与点G分别在线段BC与线段AD上时.

①求证:DG=2PC

②求证:四边形PEFD是菱形;

2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O 的半径是2直线l与⊙O 相交于AB 两点,MN 是⊙O 上的两个动点且在直线l的异侧,∠AMB45°,则四边形MANB 面积的最大值是

查看答案和解析>>

同步练习册答案