分析 (1)结合题意画出图形,即可得出结论;
(2)结合题意画出图形,即可得出结论;
(3)将等式左边先用十字相乘法分解因式,再提取公因式,将右边-1改写成1×(-1)的形式,由x、y均为整数可得出关于x、y的二元一次方程组,解方程组即可得出结论.
解答 解:(1)如图3,![]()
其中6=2×3,2=(-1)×(-2);而-7=2×(-3)+3×(-1);
∴6x2-7xy+2y2=(2x-y)(3x-2y).
如图4,![]()
其中1×1=1,(-2)×(-4)=8,(-2)×(-3)=6;
而-6=1×(-4)+1×(-2),-5=1×(-3)+1×(-2),14=(-2)×(-3)+(-4)×(-2);
∴x2-6xy+8y2-5x+14y+6=(x-2y-2)(x-4y-3).
故答案为:(2x-1)(3x-2);(x-2y-2)(x-4y-3).
(2)如图5,![]()
∵关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,
∴存在:其中1×1=1,9×(-2)=-18,(-8)×3=-24;
而7=1×(-2)+1×9,-5=1×(-8)+1×3,m=9×3+(-2)×(-8)=43或m=9×(-8)+(-2)×3=-78.
故若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,m的值为43或者-78.
(3)∵x2+3xy+2y2+2x+4y=(x+2y)(x+y)+2(x+2y)=(x+2y)(x+y+2)=-1=1×(-1),且x、y为整数,
∴有$\left\{\begin{array}{l}{x+2y=1}\\{x+y+2=-1}\end{array}\right.$,或$\left\{\begin{array}{l}{x+2y=-1}\\{x+y+2=1}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=-7}\\{y=4}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-1}\\{y=0}\end{array}\right.$.
故当x=-7时,y=4;当x=-1时,y=0.
点评 本题考查了因式分解中的十字相乘法分解因式,解题的关键是:依照题意找到相应的十字相乘的图形.本题难度不大,(1)(2)小问问题不大,(3)中用到十字相乘法与提取公因式法,再将等式右边-1分解成1×(-1),由x、y均为整数来得出二元一次方程组.
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 13.5万元 | B. | 45万元 | C. | 54万元 | D. | 100万元 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com