精英家教网 > 初中数学 > 题目详情
19.已知AB是⊙O的直径,弦CD⊥AB于O,F是DC延长线上的一点,FA、FB与⊙O分别交于M、G,GO延长线与⊙O交于N.
(1)求证:AB平分∠MAN;
(2)如图(2),若弦CD⊥OB于E,请判断AB是否仍平分∠MAN,并说明理由;
(3)在(2)的条件下,若⊙O的半径为5,FE=2CE=6,求线段AN的长.

分析 (1)若证AB平分∠MAN,可证∠FAB=∠NAB,根据题意FC垂直平分AB可得∠FAB=∠FBA,又∠GBA=∠GNA=∠NAB,可得∠FAB=∠NAB;
(2)仍然平分,需证∠FAB=∠NAB,而∠NAB=∠NGB,由图可知∠NGB=∠BFE+∠FEG、∠FAB=∠BAG+∠FAG,显然∠BAG=∠BFE,现在需证∠FAG=∠FEG,这可以由∠AGF=∠AEF=90°知A、E、G、F四点在同一个圆上可得;
(3)由(2)知AB平分∠MAN,求AN的长可转化为求AM,显然Rt△ABM∽Rt△AFE可得AM=$\frac{AB•AE}{AF}$,RT△OCE中可求OE长,进而在RT△AEF中可求出AF的长即可.

解答 解:(1)∵CD⊥OB,且OA=OB,
∴FA=FB,
∴∠FAB=∠FBA,
又∵$\widehat{AG}$所对得圆周角∠GBA=∠GNA,
∴∠FAB=∠GNA,
∵OA=ON,
∴∠GNA=∠NAB,
∴∠FAB=∠NAB,即AB平分∠MAN;
(2)如图,连接AG,

则∠AGF=∠AEF=90°,
∴AF的中点到A、E、G、F四点的距离相等,即A、E、G、F四点在同一个圆上.
∴弦FG所对的圆周角∠FAG=∠FEG.
∵∠BAG+∠ABG=∠BFE+∠FBE=90°,
∴∠BAG=∠BFE.
∵∠BGN=∠BFE+∠FEG,而∠BAM=∠FAG+∠BAG,
∴∠MAB=∠NGB.
∵∠NGB=∠NAB,
∴∠MAB=∠NAB.
∴AB平分∠MAN.
(3)连接OC、BM,
∵OC=5,CE=3,
∴在Rt△OEC中得OE=4.
∴AE=9.
在Rt△AEF,EF=6,
∴AF=3$\sqrt{13}$.
∵AB=10,由Rt△ABM∽Rt△AFE得$\frac{AM}{AE}=\frac{AB}{AF}$,
∴AM=$\frac{AB•AE}{AF}$=$\frac{30\sqrt{13}}{13}$.
∵AB平分∠MAN,
∴AN=AM=$\frac{30\sqrt{13}}{13}$.

点评 本题主要考查有关圆的综合知识,对圆中的相关定理的掌握及利用有关定理、性质进行角度间的转换比较关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的三角板如图放置,使三角板斜边的两个端点分别与A、D重合,E为直角顶点,连接EC、BE.
(1)求证:BE=CE;
(2)延长CE、BA交于F,设BE与AC相交于点O,则OE与EF的关系应为OE=OF;
(3)在(2)的条件下,已知AF=2,AO=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.点P(a,b)是y轴左方的点,且到x轴的距离为2,到y轴的距离为3,那么P的坐标为(-3,2)或(-3,-2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,已知直线y=x+1与y轴交于点A,一次函数y=kx+b的图象经过点B(0,-1),并且与x轴以及直线y=x+1分别交于点C、D.
(1)求直线BD的函数表达式;
(2)求四边形AOCD的面积;
(3)在y轴上是否存在这样的点P,使得以P、B、D为顶点的三角形是等腰三角形?如果存在,求出点P的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.“十字相乘法”能把二次三项式分解因式,对于形如ax2+bxy+cy2的x,y二次三项式来说,方法的关键是把x2项系数a分解成两个因数a1,a2的积,即a=a1•a2,把y2项系数c分解成两个因数,c1,c2的积,即c=c1•c2,并使a1•c2+a2•c1正好等于xy项的系数b,那么可以直接写成结果:ax2+bxy+cy2=(a1x+c1y)(a2x+c2y)
例:分解因式:x2-2xy-8y2
解:如右图,其中1=1×1,-8=(-4)×2,而-2=1×(-4)+1×2∴x2-2xy-8y2=(x-4y)(x+2y)
而对于形如ax2+bxy+cy2+dx+ey+f的x,y的二元二次式也可以用十字相乘法来分解,
如图1,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k);

例:分解因式:x2+2xy-3y2+3x+y+2
解:如图2,其中1=1×1,-3=(-1)×3,2=1×2;
而2=1×3+1×(-1),1=(-1)×2+3×1,3=1×2+1×1;∴x2+2xy-3y2+3x+y+2=(x-y+1)(x+3y+2)
请同学们通过阅读上述材料,完成下列问题:
(1)分解因式:6x2-7xy+2y2=(2x-y)(3x-2y)x2-6xy+8y2-5x+14y+6=(x-2y-2)(x-4y-3)
(2)若关于x,y的二元二次式x2+7xy-18y2-5x+my-24可以分解成两个一次因式的积,求m的值.
(3)已知x,y为整数,且满足x2+3xy+2y2+2x+4y=-1,求x,y.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.把抛物线y=-x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(  )
A.y=-(x+3)2+1B.y=-(x+1)2+3C.y=-(x-1)2+4D.y=-(x+1)2+4

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.用40cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3:2,则较长边的长度为12cm.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.某校学生会准备调查初三同学每天(除课间操外)的课外锻炼时间.
(1)确定调查方式时,甲同学说:“我到(1)班去调查全体同学”;乙同学说:“我到体育场上去询问参加锻炼的同学”;丙同学说:“我到初三每个班去随机调查一定数量的同学”.请你指出哪位同学的调查方式最为合理;
(2)他们采用了最为合理的调查方法收集数据,并绘制出如图1所示的条形统计图和如图2所示的扇形统计图,请将条形统计图补充完整,并在扇形统计图中涂出一块表示“基本不参加”的部分.
(3)若该校初三共有240名同学,请你估计该年级每天(除课间操外)课外锻炼时间不大于20分钟的人数.
(注:图2中相邻两虚线形成的圆心角为30°.)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.在平面直角坐标系中有一个正方形OACB,点A坐标为(4,0),M、N分别是OA、AC上的两个动点,当M点在OA上运动时,一直保持BM和MN垂直.
(1)证明:Rt△BOM∽RtMAN;
(2)设OM=x,梯形BOAN的面积为y,求y与x之间的函数关系式;
(3)当点M点运动到什么位置时S△BOM:SMAN=9:1,求x的值,并求出此时点N的坐标.

查看答案和解析>>

同步练习册答案