精英家教网 > 初中数学 > 题目详情
4.把抛物线y=-x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(  )
A.y=-(x+3)2+1B.y=-(x+1)2+3C.y=-(x-1)2+4D.y=-(x+1)2+4

分析 根据二次函数图象左加右减,上加下减的平移规律进行求解.

解答 解:抛物线y=-x2+1向左平移1个单位,得:y=-(x+1)2+1;
然后向上平移3个单位,得:y=-(x+1)2+1+3.
即y=-(x+1)2+4,
故选D.

点评 主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

14.如图,△ABC的内角∠ABC和外角∠ACD的平分线交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,以下结论:
①BG=EG;②△HEF≌△CBF;③∠AEB+∠ACE=90°;④BG-CH=GH;⑤∠AEC+∠ABE=90°,其中正确的是①③④⑤(只填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列说法正确的是(  )
A.整数包括正整数和负整数B.0是整数但不是正数
C.正数,负数,0统称为有理数D.非负有理数是指正有理数

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知△ABC是边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第五个等腰直角三角形的斜边AG长为(  )
A.4$\sqrt{2}$B.5$\sqrt{2}$C.4$\sqrt{3}$D.5$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.已知AB是⊙O的直径,弦CD⊥AB于O,F是DC延长线上的一点,FA、FB与⊙O分别交于M、G,GO延长线与⊙O交于N.
(1)求证:AB平分∠MAN;
(2)如图(2),若弦CD⊥OB于E,请判断AB是否仍平分∠MAN,并说明理由;
(3)在(2)的条件下,若⊙O的半径为5,FE=2CE=6,求线段AN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.三角形的边长之比为:①1.5:2:2.5;②4:7.5:8.5;③1:$\sqrt{3}$:2;④3.5:4.5:5.5.其中可以构成直角三角形的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图1,等边△ABC边长为6,AD是△ABC的中线,P为线段AD(不包括端点A、D)上一动点,以CP为一边且在CP左下方作如图所示的等边△CPE,连结BE.
(1)点P在运动过程中,线段BE与AP始终相等吗?说说你的理由;
(2)若延长BE至F,使得CF=CE=5,如图2,问:
①求出此时AP的长;
②当点P在线段AD的延长线上时,判断EF的长是否为定值,若是请直接写出EF的长;若不是请简单说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.若-5是一元二次方程x2-9x+m=0的一个根,则方程的另一根是(  )
A.4B.-4C.14D.-14

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.$\sqrt{8}-{(\frac{1}{{2-\sqrt{5}}})^0}+2×{2^{-1}}$=2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案