精英家教网 > 初中数学 > 题目详情
14.如图,△ABC的内角∠ABC和外角∠ACD的平分线交于点E,BE交AC于点F,过点E作EG∥BD交AB于点G,交AC于点H,连接AE,以下结论:
①BG=EG;②△HEF≌△CBF;③∠AEB+∠ACE=90°;④BG-CH=GH;⑤∠AEC+∠ABE=90°,其中正确的是①③④⑤(只填序号).

分析 ①根据角平分线定义得出∠ABE=∠CBE,根据平行线性质得出∠CBE=∠BEG,从而得出∠ABE=∠BEG,由等腰三角形的判定定理即可得到结论;
②根据相似三角形的判定定理得到两个三角形相似,不能得出全等;
③由于E是两条角平分线的交点,根据角平分线的性质可得出点E到BA、AC、BC和距离相等,从而得出AE为∠BAC外角平分线这个重要结论,再利用三角形内角和性质与外角性质进行角度的推导即可轻松得出结论.
④根据∠AEC=180-x-z,于是得到∠AEC=180-(y+90°),推出y+∠AEC=90°,即可得到结论;
⑤由BG=GE,CH=EH,于是得到BG-CH=GE-EH=GH.即可得到结论.

解答 解:①∵BE平分∠ABC,
∴∠ABE=∠CBE,
∵GE∥BC,
∴∠CBE=∠GEB,
∴∠ABE=∠GEB,
∴BG=GE,故①正确.
同理CH=HE.
②△HEF与△CBF只有两个角是相等的,能得出相似,但不含相等的边,所有不能得出全等的结论,故②错误.
③过点E作EN⊥AC于N,ED⊥BC于D,EM⊥BA于M,如图,
∵BE平分∠ABC,
∴EM=ED,
∵CE平分∠ACD,
∴EN=ED,
∴EN=EM,
∴AE平分∠CAM,
设∠ACE=∠DCE=x,∠ABE=∠CBE=y,∠MAE=∠CAE=z,如图,
则∠BAC=180°-2z,∠ACB=180-2x,
∵∠ABC+∠ACB+∠BAC=180°,
∴2y+180°-2z+180°-2x=180°,
∴x+z=y+90°,
∵z=y+∠AEB,
∴x+y+∠AEB=y+90°,
∴x+∠AEB=90°,
即∠ACE+∠AEB=90°,故③正确.
④∵∠AEC=180-x-z,
∴∠AEC=180-(y+90°),
∴y+∠AEC=90°,
即∠ABE+∠AEC=90°,
故④正确.
⑤∵BG=GE,CH=EH,
∴BG-CH=GE-EH=GH.
故⑤正确.
综上,①③④⑤正确.
故答案填①③④⑤.

点评 本题考查了平行线的性质,角平分线的定义,角平分线的性质与判定,等腰三角形的判定,三角形内角和定理、三角形外角性质等多个知识点,难度中等.判断出AE是∠BAC外角平分线是关键,事实上,点E就是△ABC的旁心.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.已知满足不等式组$\left\{\begin{array}{l}{x+2>0}\\{x-m<0}\end{array}\right.$的整数解有3个,则m的取值范围是1<m≤2.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.化简|5-$\sqrt{26}$|+5的结果是$\sqrt{26}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为3$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的三角板如图放置,使三角板斜边的两个端点分别与A、D重合,E为直角顶点,连接EC、BE.
(1)求证:BE=CE;
(2)延长CE、BA交于F,设BE与AC相交于点O,则OE与EF的关系应为OE=OF;
(3)在(2)的条件下,已知AF=2,AO=1,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.将一副三角板按如图方式叠放,则角θ为(  )
A.75度B.60度C.45度D.30度

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在平面直角坐标系中A(-10,20)、B(-10,-5)、C(10,-5)、D(10,20),已知抛物线C1:y=ax2经过点A.
(1)求抛物线C1的解析式.
(2)如图,线段BC与y轴交于E点,经过点E的直线FG与线段CD相交于点F,又与线段AB的延长线相交于点G.若∠AFE=∠CFE,求以原点为顶点且经过G点的二次函数C2的解析式.
(3)在(2)的条件下,直线x=5交抛物线C1于点P,交抛物线C2于Q;直线x=m交抛物线C2于点M,交直线PG于点N,若PQ:MN=29:32,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列运算正确的是(  )
A.x4+x4=2x8B.x3•x=x4C.(x-y)2=x2-y2D.(x23=x5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.把抛物线y=-x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为(  )
A.y=-(x+3)2+1B.y=-(x+1)2+3C.y=-(x-1)2+4D.y=-(x+1)2+4

查看答案和解析>>

同步练习册答案