分析 过点D作DE⊥AB于E,根据角平分线上的点到角的两边的距离相等可得CD=DE,然后利用“HL”证明△ADC和△ADE全等,根据全等三角形的对应边相等可得AE=AC,再求出BE=AE,即可得证.
解答 证明:如图,过点D作DE⊥AB于E,![]()
∵∠C=90°,∠B=30°,AD平分∠BAC,
∴CD=DE,
在△ADC和△ADE中,$\left\{\begin{array}{l}{AD=AD}\\{CD=DE}\end{array}\right.$,
∴△ADC≌△ADE(HL),
∴AE=AC,
∵AB=2AC,
∴BE=AB-AE=2AC-AE=AE,
∴点D在AB的垂直平分线上
点评 本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,作辅助线构造出全等三角形是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com