【题目】阅读理解:解方程x2﹣|x|﹣2=0解:(1)当x≥0时,原方程可以化为x2﹣x﹣2=0,
解得x1=2,x2=﹣1<0(不合题意,舍去);(2)当x<0时,原方程可以化为x2+x﹣2=0,解得x1=﹣2,x2=1>0(舍去).∴原方程的解为x1=2,x2=﹣2.那么方程x2﹣|x﹣1|﹣1=0的解为( )
A.=0,=1B.=﹣2,=1
C.=1,=﹣2D.=1,=2
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等腰直角三角形,∠ACB=90°,点A在反比例函数y=﹣的图象上,点B、C都在反比例函数y=﹣的图象上,AB∥x轴,则点A的坐标为( )
A.(﹣,2)B.(﹣,)C.(﹣,)D.(﹣2,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系内,∠OA0A1=90°,∠A1OA0=60°,以OA1为直角边向外作Rt△OA1A2,使∠A2A1O=90°,∠A2OA1=60°,按此方法进行下去,得到 Rt△OA2A3,Rt△OA3A4…,若点A0的坐标是(1,0),则点A13的横坐标是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知P是半径为3的⊙A上一点,延长AP到点C,使AC=4,以AC为对角线作ABCD,AB=4,⊙A交边AD于点E,当ABCD面积为最大值时,的长为( )
A.πB.πC.πD.3π
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l1与l2相交于点P,点P横坐标为﹣1,l1的解析式为y=x+3,且l1与y轴交于点A,l2与y轴交于点B,点A与点B恰好关于x轴对称.
(1)求点B的坐标;
(2)求直线l2的解析式;
(3)若点M为直线l2上一动点,直接写出使△MAB的面积是△PAB的面积的的点M的坐标;
(4)当x为何值时,l1,l2表示的两个函数的函数值都大于0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A. (54+10) cm B. (54+10) cm C. 64 cm D. 54cm
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为4的正方形ABCD的一边BC与直角边分别是2和4的Rt△GEF的
一边GF重合.正方形ABCD以每秒1个单位长度的速度沿GE向右匀速运动,当点A和点E重合时正方形停止运
动.设正方形的运动时间为t秒,正方形ABCD与Rt△GEF重叠部分面积为s,则s关于t的函数图象为
A. B.
C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点(点A在点B的左侧),与y轴交于点C(0,3),作直线BC.动点P在x轴上运动,过点P作PM⊥x轴,交抛物线于点M,交直线BC于点N,设点P的横坐标为m.
(1)求抛物线的解析式;
(2)当点P在线段OB上运动时,求线段MN的最大值;
(3)是否存在点P,使得以点C、O、M、N为顶点的四边形是平行四边形?若存在,请直接写出m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过两点,与轴交于点.
(1)求此抛物线的解析式;
(2)已知点为轴上一点,点关于直线的对称点为.
①当点刚好落在第四象限的抛物线上时,求出点的坐标;
②点在抛物线上,连接,是否存在点,使为等腰直角三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com