【题目】综合与探究:
如图1,抛物线y=x2+x+3与x轴交于C、F两点(点C在点F左边),与y轴交于点D,AD=2,点B坐标为(﹣4,5),点E为AB上一点,且BE=ED,连接CD,CB,CE.
(1)求点C、D、E的坐标;
(2)如图2,延长ED交x轴于点M,请判断△CEM的形状,并说明理由;
(3)在图2的基础上,将△CEM沿着CE翻折,使点M落在点M'处,请判断点M'是否在此抛物线上,并说明理由.
【答案】(1)点C的坐标是(﹣4,0),点D的坐标是(0,3),点E的坐标是(﹣,5);(2)△CEM的等腰三角形.理由见解析;(3)点M'不在此抛物线上.理由见解析.
【解析】
(1)结合抛物线解析式求得点C、D的坐标;设EA=a,根据已知条件BE=ED列出方程a2+22=(4-a)2,解方程即可求得a的值,易得点E的坐标;
(2)△CEM的等腰三角形,利用全等三角形(△CBE≌△CDE)的性质得到∠BEC=∠CED,由平行线的性质和等量代换推知∠CED=∠ECM.所以EM=CM,证得△CEM的等腰三角形;
(3)点M'不在此抛物线上.设M(m,0).由相似三角形(△DOM∽△DAE)的对应边成比例求得m的值,易得CM的长度,根据翻折的性质知EM=EM′.易得四边形CMEM′是菱形.由菱形的对边相等的性质可以求得点M′的坐标,将代入函数解析式进行验证即可.
(1)如图1所示,
∵抛物线y=x2+ x+3与x轴交于C,当y=0时,x2+ x+3=0.
解得x1=﹣,x2=﹣4.
∵点C在点F左边,
∴点C的坐标是(﹣4,0).
当x=0时,y=3.
∴点D的坐标是(0,3).
∵AD=2,D(0,3),
∴OA=5.
∵点B坐标为(﹣4,5),
∴BA∥x轴.
在Rt△EAD中,设EA=a,EB=4﹣a.
又BE=ED,
∴DE=4﹣a.
∴a2+22=(4﹣a)2,得a=.
∴点E的坐标是(,5).
(2)如图2所示,△CEM的等腰三角形.理由如下:
由C(﹣4,0),D(0,3)知,OC=4,OD=3.
由勾股定理求得CD=5.
又∵点B坐标为(﹣4,5),
∴CB=5,CD=CB.
又∵BE=BD,
∴△CBE≌△CDE(SSS).
∴∠BEC=∠CED.
又∵BE∥CM,
∴∠BEC=∠ECM,
∴∠CED=∠ECM.
∴EM=CM.
∴△MCE是等腰三角形.
(3)点M'不在此抛物线上.理由如下:
如图3所示,
设点M的坐标是(m,0).
∵△DOM∽△DAE.
,即
解得m=.
∵CM=4+ =.
由翻折可知,EM=EM′.
∵CM=EM,
∴四边形CMEM′是菱形.
∴EM′=CM=.
.
∴点M′的坐标是(,5).
当m=时,代入抛物线解析式y=x2+ x+3,得
.
∴点M′不在此抛物线上.
科目:初中数学 来源: 题型:
【题目】某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定.现随机取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:
根据上述信息完成下列问题:
(1)求这次抽取的样本的容量;
(2)请在图②中把条形统计图补充完整;
(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代算书《九章算术》中第九章第六题是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深葭长各几何?你读懂题意了吗?请回答水深______尺,葭长_____尺.解:根据题意,设水深OB=x尺,则葭长OA'=(x+1)尺.可列方程正确的是( )
A. x2+52 =(x+1)2B. x2+52 =(x﹣1)2
C. x2+(x+1)2 =102D. x2+(x﹣1)2=52
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了给游客提供更好的服务,某景区随机对部分游客进行了关于“景区服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.
满意度 | 人数 | 所占百分比 |
非常满意 | 12 | 10% |
满意 | 54 | m |
比较满意 | n | 40% |
不满意 | 6 | 5% |
根据图表信息,解答下列问题:
(1)本次调查的总人数为______,表中m的值为_______;
(2)请补全条形统计图;
(3)据统计,该景区平均每天接待游客约3600人,若将“非常满意”和“满意”作为游客对景区服务工作的肯定,请你估计该景区服务工作平均每天得到多少名游客的肯定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的是( )
A. 为了解全省中学生的心理健康状况,宜采用普查方式
B. 掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为
C. 掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件
D. 甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,O为坐标原点,四边形OABC为矩形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动,当△ODP是腰长为5的等腰三角形时,则P点的坐标为( )
A. (3,4)或(2,4) B. (2,4)或(8,4)
C. (3,4)或(8,4) D. (3,4)或(2,4)或(8,4)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为积极创建全国文明城市,我市对某路口的行人交通违章情况进行了20天的调查,将所得的数据绘制成如下统计图(图2不完整):
请根据所给信息,解答下列问题:
(1)第13天,这一路口的行人交通违章次数是 ;这20天中,行人交通违章7次的有 天.
(2)这20天中,行人交通违章6次的有 天;请把图2中的频数直方图补充完整.
(3)请你根据图2绘制一个扇形统计图,并求行人违章9次的天数在扇形统计图中所对的圆心角度数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com