【题目】(2016贵州省毕节市第27题)如图,已知抛物线与直线交于A(a,8)、B两点,点P是抛物线上A、B之间的一个动点,过点P分别作轴、轴的平行线与直线AB交于点C和点E.
(1)求抛物线的解析式;
(2)若C 为AB中点,求PC的长;
(3)如图,以PC,PE为边构造矩形PCDE,设点D的坐标为(m,n),请求出m,n之间的关系式。
【答案】(1)、y=+2x;(2)、-1;(3)、-4n-8m-16=0
【解析】
试题分析:(1)、首先根据点A在一次函数上求出点A的坐标,然后代入二次函数得出解析式;(2)、根据一次函数和二次函数得出点B的坐标,根据中点的性质得出点C的坐标,根据点P在抛物线上得出点P的坐标,从而得出PC的长度;(3)、根据点D的坐标从而得出点C、点E和点P的坐标,根据DE=CP得出m和n之间的关系式.
试题解析:(1)、∵A(a,8)在直线上 ∴8=2a+4 解得:a=2
将A(2,8)代入二次函数可得:8=4+2b 解得:b=2 ∴抛物线的解析式为:y=+2x
(2)、由可得点B的坐标为(-2,0) 根据中点坐标公式可得:C(0,4)
∵点P在抛物线上且纵坐标与C相同 ∴P(-1,4) ∴PC=-1-0=-1.
(3)、∵D(m,n) ∴C(m,2m+4),E(,n),P(,2m+4)
由DE=CP可得:-m=-m 化简得:-4n-8m-16=0
科目:初中数学 来源: 题型:
【题目】下列关于圆的叙述正确的有( )
①圆内接四边形的对角互补;
②相等的圆周角所对的弧相等;
③正多边形内切圆的半径与正多边形的半径相等;
④同圆中的平行弦所夹的弧相等.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC和△A′B′C′是位似图形.△A′B′C′的面积为6 cm2,△A′B′C′的周长是△ABC的周长一半.则△ABC的面积等于( )
A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:
①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的是( )
A.②④⑤⑥ B.①③⑤⑥ C.②③④⑥ D.①③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com