精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD是一块绿化带,其中阴影部分EOFBGHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为(  )

A.B.C.D.

【答案】A

【解析】

设正方形ABCD的边长为a,根据正方形的性质∠ACB=∠ACD45°,ACa,再利用四边形BEOF为正方形易得CFOFBFa,则S正方形BEOFa2,设正方形MNGH的边长为x,易得CMANMNx,即3xa,解得xx,则S正方形MNGHa2,然后根据几何概率的意义,用两个小正方形的面积和除以正方形ABCD的面积即可得到小鸟落在花圃上的概率,从而得到小鸟不落在花圃上的概率.

解:设正方形ABCD的边长为a

∵四边形ABCD为正方形,

∴∠ACB=∠ACD45°ACa

∵四边形BEOF为正方形,

CFOFBF

S正方形BEOF=(a2a2

设正方形MNGH的边长为x

∵△ANG和△CMH都是等腰直角三角形,

CMANMNx

3xa,解得xa

S正方形MNGHa2

∴小鸟不落在花圃上的概率=1

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】甲乙两名同学做摸球游戏,他们把三个分别标有123的大小和形状完全相同的小球放在一个不透明的口袋中.

1)求从袋中随机摸出一球,标号是1的概率;

2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:ab<0,b24a0<a+b+c<2,0<b<1,当x>﹣1时,y>0,其中正确结论的个数是

A.5个 B.4个 C.3个 D.2个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2-4x-3,下列说法中正确的是(

A.该函数图象的开口向下B.该函数图象的顶点坐标是(-2,-7)

C.x<0时,yx的增大而增大D.该函数图象与x轴有两个不同的交点,且分布在坐标原点两侧

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BD是半圆O的直径,ABD延长线上的一点,BCAE,交AE的延长线于点C,交半圆O于点F,且E为弧DF的中点.

1)求证:AC是半圆O的切线;

2)若BC8BE6,求半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某球室有三种品牌的个乒乓球,价格是789(单位:元)三种.从中随机拿出一个球,已知(一次拿到元球)

1)求这个球价格的众数;

2)若甲组已拿走一个元球训练,乙组准备从剩余个球中随机拿一个训练.

所剩的个球价格的中位数与原来个球价格的中位数是否相同?并简要说明理由;

乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线yx2+m+1xm2m0)与x轴交于AB两点,与y轴交于点C,不论m取何正数,经过ABC三点的⊙P恒过y轴上的一个定点,则该定点的坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线轴交于点,与轴交于点,抛物线与直线交于两点,点是抛物线的顶点.

1)求抛物线的解析式;

2)点是直线上方抛物线上的一个动点,其横坐标为,过点轴的垂线,交直线于点,当线段的长度最大时,求的值及的最大值.

3)在抛物线上是否存在异于的点,使边上的高为,若存在求出点的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的一条弦,C⊙O上一动点,∠ACB=30°,EF分别是ACBC的中点,直线EF⊙O交于GH两点,⊙O的半径为8,GE+FH的最大值为(

A.8B.12C.16D.20

查看答案和解析>>

同步练习册答案