精英家教网 > 初中数学 > 题目详情

【题目】如图,AB⊙O的一条弦,C⊙O上一动点,∠ACB=30°,EF分别是ACBC的中点,直线EF⊙O交于GH两点,⊙O的半径为8,GE+FH的最大值为(

A.8B.12C.16D.20

【答案】B

【解析】

首先连接OAOB,根据圆周角定理,求出∠AOB=2ACB=60°,进而判断出△AOB为等边三角形;然后根据⊙O的半径为8,可得AB=OA=OB=8,再根据三角形的中位线定理,求出EF的长度;最后判断出当弦GH是圆的直径时,它的值最大,进而求出GE+FH的最大值是多少即可.

如图所示,连接OAOB

∵∠ACB=30°,

∴∠AOB=2ACB=60°,

OA=OB

∴△AOB为等边三角形,

O的半径为8

AB=OA=OB=8

∵点EF分别是ACBC的中点,

EF=AB=4

GE+EF+FH=GHEF为定值,

∴当GH最大时,GE+FH最大

∵当弦GH是圆的直径时,它的最大值为:8×2=16

GE+FH的最大值为:164=12.

故选B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD是一块绿化带,其中阴影部分EOFBGHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟不落在花圃上的概率为(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中国共产党第十九次全国代表大会提出了要坚定实施七大战略,某数学兴趣小组从中选取了四大战略进行调查,A:科教兴国战略,B:人才强国战略,C:创新驱动发展战略,D:可持续发展战略,要求被调查的每位学生只能从中选择一个自已最关注的战略,根据调查结果,该小组绘制了如图所示的两幅不完整的统计图,请你根据统计图中提供的信息,解答下列问题:

1)求本次抽样调查的学生人数;

2)求出统计图中mn的值;

3)在扇形统计图中,求战略B所在扇形的圆心角度数;

4)若该校有3000名学生,请估计出选择战略AB共有的学生数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,点分别是边的中点,分别交对角线于点,则______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知矩形中,,点分别在边上,将四边形沿直线翻折,点的对称点分别记为.

1)当时,若点恰好落在线段上,求的长;

2)设,若翻折后存在点落在线段上,则的取值范围是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).

(1)求此抛物线的表达式;

(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC中,∠C90°EAB边上一点,DAC边上一点,且点D不与AC重合,EDAC

1)当sinB=时,

①求证:BE2CD.

②当ADE绕点A旋转到如图2的位置时(45°<∠CAD90°).BE2CD是否成立?若成立,请给出证明;若不成立.请说明理由.

2)当sinB=时,将ADE绕点A旋转到∠DEB90°,若AC10AD2,求线段CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们定义一种新函数:形如,且)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为;②图象具有对称性,对称轴是直线;③当时,函数值值的增大而增大;④当时,函数的最小值是0;⑤当时,函数的最大值是4.其中正确结论的个数是______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“瞎转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径米是其两腿迈出的步长之差厘米的反比例函数,其图象如图所示.

请根据图象中的信息解决下列问题:

1)求之间的函数表达式;

2)当某人两腿迈出的步长之差为厘米时,他蒙上眼睛走出的大圆圈的半径为______米;

3)若某人蒙上眼睛走出的大圆圈的半径不小于米,则其两腿迈出的步长之差最多是多少厘米?

查看答案和解析>>

同步练习册答案