精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形中,,在边上,且,将沿对折至,延长交边于点,连接.则下列结论:①.其中正确的是( )

A. ①② B. ①②③ C. ①②④ D. ①②③④

【答案】B

【解析】根据翻折变换的性质和正方形的性质可证ABG≌△AFG;在直角ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=AGF=GFC=GCF,由平行线的判定可得AGCF;由于SFGC=SGCE-SFEC,求得面积比较即可.

①正确.因为AB=AD=AF,AG=AG,B=AFG=90°∴△ABG≌△AFG;

②正确.因为:EF=DE=CD=2,设BG=FG=x,则CG=6-x.在直角ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;

③正确.因为CG=BG=GF,所以FGC是等腰三角形,∠GFC=GCF.又∠AGB=AGF,AGB+AGF=180°-FGC=GFC+GCF,

∴∠AGB=AGF=GFC=GCF,AGCF;

④错误.过FFHDC,

BCDH,

FHGC,

∴△EFH∽△EGC,

EF=DE=2,GF=3,

EG=5,

∴△EFH∽△EGC,

∴相似比为:

SFGC=SGCE-SFEC=×3×4-×4×(×3)=

SAFE=S△ADE=

SFGCSAFE

故答案为:①②③

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将△ABC的边AB绕点A顺时针旋转α得到AB,边AC绕点A逆时针旋转β得到AC′,αβ=180°.连接BC,作△ABC的中线AD

(初步感知)

(1)如图,当∠BAC=90°,BC=4时,AD的长为______

(探索证明)

(2)如图②,△ABC为任意三角形时,猜想ADBC的数量关系,并证明

(应用延伸)

(3)如图,已知等腰△ACBAC=BC=m,延长ACD,延长CBE,使CD=CE=n,将△CEDC顺时针旋转一周得到△CED,连接BE′、AD,若∠CBE′=90°,求AD的长度(用含mn的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》勾股章的问题::今有二人同所立,甲行率七,乙行率三,乙东行,甲南行十步而斜东北与乙会.问甲、乙各行几何?大意是说:如图,甲乙二人从A处同时出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走十步到达C处,后沿北偏东某方向走了一段距离后与乙在B处相遇,这时,甲乙各走了多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AD=2AB,E、F、G、H分别是AB,BC,CD,AD边上的点,EG⊥FH,FH=2 ,则四边形EFGH的面积为(
A.8
B.8
C.12
D.24

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了(  )天.

A. 10 B. 20 C. 30 D. 25

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是马小哈同学做的一道题

解方程

:①去分母 4(2x﹣1)=1﹣3(x+2)

去括号 8x﹣4=1﹣3x﹣6

移项8x+3x=1﹣6+4

合并同类项 11x=﹣1

系数化为1,

(1)上面的解题过程中最早出现错误的步骤是(填代号)

(2)请在本题右边正确的解方程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知点C在线段AB上,线段AC=10厘米,BC=6厘米,点M,N分别是AC,BC的中点.

(1)求线段MN的长度;

(2)根据第(1)题的计算过程和结果,设AC+BC=a,其他条件不变,求MN的长度;

(3)动点P、Q分别从A、B同时出发,点P2cm/s的速度沿AB向右运动,终点为B,点Q1cm/s的速度沿AB向左运动,终点为A,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C、P、Q三点有一点恰好是以另两点为端点的线段的中点?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点

的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系

如图所示,给出以下结论:a=8;b=92;c=123.其中正确的是【 】

A.①②③ B.仅有①② C.仅有①③ D.仅有②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC. ①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.

查看答案和解析>>

同步练习册答案